1 - HugeGraph RESTful API

HugeGraph-Server通过HugeGraph-API基于HTTP协议为Client提供操作图的接口,主要包括元数据和 图数据的增删改查,遍历算法,变量,图操作及其他操作。

除了下方的文档,你还可以通过 localhost:8080/swagger-ui/index.html 访问 swagger-ui 以查看 RESTful API示例可以参考此处

1.1 - Schema API

1.1 Schema

HugeGraph 提供单一接口获取某个图的全部 Schema 信息,包括:PropertyKey、VertexLabel、EdgeLabel 和 IndexLabel。

Method & Url
GET http://localhost:8080/graphs/{graph_name}/schema

e.g: GET http://localhost:8080/graphs/hugegraph/schema
Response Status
200
Response Body
{
    "propertykeys": [
        {
            "id": 7,
            "name": "price",
            "data_type": "DOUBLE",
            "cardinality": "SINGLE",
            "aggregate_type": "NONE",
            "write_type": "OLTP",
            "properties": [],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:05.316"
            }
        },
        {
            "id": 6,
            "name": "date",
            "data_type": "TEXT",
            "cardinality": "SINGLE",
            "aggregate_type": "NONE",
            "write_type": "OLTP",
            "properties": [],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:05.309"
            }
        },
        {
            "id": 3,
            "name": "city",
            "data_type": "TEXT",
            "cardinality": "SINGLE",
            "aggregate_type": "NONE",
            "write_type": "OLTP",
            "properties": [],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:05.287"
            }
        },
        {
            "id": 2,
            "name": "age",
            "data_type": "INT",
            "cardinality": "SINGLE",
            "aggregate_type": "NONE",
            "write_type": "OLTP",
            "properties": [],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:05.280"
            }
        },
        {
            "id": 5,
            "name": "lang",
            "data_type": "TEXT",
            "cardinality": "SINGLE",
            "aggregate_type": "NONE",
            "write_type": "OLTP",
            "properties": [],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:05.301"
            }
        },
        {
            "id": 4,
            "name": "weight",
            "data_type": "DOUBLE",
            "cardinality": "SINGLE",
            "aggregate_type": "NONE",
            "write_type": "OLTP",
            "properties": [],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:05.294"
            }
        },
        {
            "id": 1,
            "name": "name",
            "data_type": "TEXT",
            "cardinality": "SINGLE",
            "aggregate_type": "NONE",
            "write_type": "OLTP",
            "properties": [],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:05.250"
            }
        }
    ],
    "vertexlabels": [
        {
            "id": 1,
            "name": "person",
            "id_strategy": "PRIMARY_KEY",
            "primary_keys": [
                "name"
            ],
            "nullable_keys": [
                "age",
                "city"
            ],
            "index_labels": [
                "personByAge",
                "personByCity",
                "personByAgeAndCity"
            ],
            "properties": [
                "name",
                "age",
                "city"
            ],
            "status": "CREATED",
            "ttl": 0,
            "enable_label_index": true,
            "user_data": {
                "~create_time": "2023-05-08 17:49:05.336"
            }
        },
        {
            "id": 2,
            "name": "software",
            "id_strategy": "CUSTOMIZE_NUMBER",
            "primary_keys": [],
            "nullable_keys": [],
            "index_labels": [
                "softwareByPrice"
            ],
            "properties": [
                "name",
                "lang",
                "price"
            ],
            "status": "CREATED",
            "ttl": 0,
            "enable_label_index": true,
            "user_data": {
                "~create_time": "2023-05-08 17:49:05.347"
            }
        }
    ],
    "edgelabels": [
        {
            "id": 1,
            "name": "knows",
            "source_label": "person",
            "target_label": "person",
            "frequency": "SINGLE",
            "sort_keys": [],
            "nullable_keys": [],
            "index_labels": [
                "knowsByWeight"
            ],
            "properties": [
                "weight",
                "date"
            ],
            "status": "CREATED",
            "ttl": 0,
            "enable_label_index": true,
            "user_data": {
                "~create_time": "2023-05-08 17:49:08.437"
            }
        },
        {
            "id": 2,
            "name": "created",
            "source_label": "person",
            "target_label": "software",
            "frequency": "SINGLE",
            "sort_keys": [],
            "nullable_keys": [],
            "index_labels": [
                "createdByDate",
                "createdByWeight"
            ],
            "properties": [
                "weight",
                "date"
            ],
            "status": "CREATED",
            "ttl": 0,
            "enable_label_index": true,
            "user_data": {
                "~create_time": "2023-05-08 17:49:08.446"
            }
        }
    ],
    "indexlabels": [
        {
            "id": 1,
            "name": "personByAge",
            "base_type": "VERTEX_LABEL",
            "base_value": "person",
            "index_type": "RANGE_INT",
            "fields": [
                "age"
            ],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:05.375"
            }
        },
        {
            "id": 2,
            "name": "personByCity",
            "base_type": "VERTEX_LABEL",
            "base_value": "person",
            "index_type": "SECONDARY",
            "fields": [
                "city"
            ],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:06.898"
            }
        },
        {
            "id": 3,
            "name": "personByAgeAndCity",
            "base_type": "VERTEX_LABEL",
            "base_value": "person",
            "index_type": "SECONDARY",
            "fields": [
                "age",
                "city"
            ],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:07.407"
            }
        },
        {
            "id": 4,
            "name": "softwareByPrice",
            "base_type": "VERTEX_LABEL",
            "base_value": "software",
            "index_type": "RANGE_DOUBLE",
            "fields": [
                "price"
            ],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:07.916"
            }
        },
        {
            "id": 5,
            "name": "createdByDate",
            "base_type": "EDGE_LABEL",
            "base_value": "created",
            "index_type": "SECONDARY",
            "fields": [
                "date"
            ],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:08.454"
            }
        },
        {
            "id": 6,
            "name": "createdByWeight",
            "base_type": "EDGE_LABEL",
            "base_value": "created",
            "index_type": "RANGE_DOUBLE",
            "fields": [
                "weight"
            ],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:08.963"
            }
        },
        {
            "id": 7,
            "name": "knowsByWeight",
            "base_type": "EDGE_LABEL",
            "base_value": "knows",
            "index_type": "RANGE_DOUBLE",
            "fields": [
                "weight"
            ],
            "status": "CREATED",
            "user_data": {
                "~create_time": "2023-05-08 17:49:09.473"
            }
        }
    ]
}

1.2 - PropertyKey API

1.2 PropertyKey

Params说明:

  • name:属性类型名称,必填
  • data_type:属性类型数据类型,包括:bool、byte、int、long、float、double、text、date、uuid、blob,默认 text 类型 (代表 string 字符串类型)
  • cardinality:属性类型基数,包括:single、list、set,默认 single (代表单属性值)

请求体字段说明:

  • id:属性类型id值
  • properties:属性的属性,对于属性而言,此项为空
  • user_data:设置属性类型的通用信息,比如可设置age属性的取值范围,最小为0,最大为100;目前此项不做任何校验,只为后期拓展提供预留入口

1.2.1 创建一个 PropertyKey

Method & Url
POST http://localhost:8080/graphs/hugegraph/schema/propertykeys
Request Body
{
    "name": "age",
    "data_type": "INT",
    "cardinality": "SINGLE"
}
Response Status
202
Response Body
{
    "property_key": {
        "id": 1,
        "name": "age",
        "data_type": "INT",
        "cardinality": "SINGLE",
        "aggregate_type": "NONE",
        "write_type": "OLTP",
        "properties": [],
        "status": "CREATED",
        "user_data": {
            "~create_time": "2022-05-13 13:47:23.745"
        }
    },
    "task_id": 0
}

1.2.2 为已存在的 PropertyKey 添加或移除 userdata

Params
  • action: 表示当前行为是添加还是移除,取值为append(添加)和eliminate(移除)
Method & Url
PUT http://localhost:8080/graphs/hugegraph/schema/propertykeys/age?action=append
Request Body
{
    "name": "age",
    "user_data": {
        "min": 0,
        "max": 100
    }
}
Response Status
202
Response Body
{
    "property_key": {
        "id": 1,
        "name": "age",
        "data_type": "INT",
        "cardinality": "SINGLE",
        "aggregate_type": "NONE",
        "write_type": "OLTP",
        "properties": [],
        "status": "CREATED",
        "user_data": {
            "min": 0,
            "max": 100,
            "~create_time": "2022-05-13 13:47:23.745"
        }
    },
    "task_id": 0
}

1.2.3 获取所有的 PropertyKey

Method & Url
GET http://localhost:8080/graphs/hugegraph/schema/propertykeys
Response Status
200
Response Body
{
    "propertykeys": [
        {
            "id": 3,
            "name": "city",
            "data_type": "TEXT",
            "cardinality": "SINGLE",
            "properties": [],
            "user_data": {}
        },
        {
            "id": 2,
            "name": "age",
            "data_type": "INT",
            "cardinality": "SINGLE",
            "properties": [],
            "user_data": {}
        },
        {
            "id": 5,
            "name": "lang",
            "data_type": "TEXT",
            "cardinality": "SINGLE",
            "properties": [],
            "user_data": {}
        },
        {
            "id": 4,
            "name": "weight",
            "data_type": "DOUBLE",
            "cardinality": "SINGLE",
            "properties": [],
            "user_data": {}
        },
        {
            "id": 6,
            "name": "date",
            "data_type": "TEXT",
            "cardinality": "SINGLE",
            "properties": [],
            "user_data": {}
        },
        {
            "id": 1,
            "name": "name",
            "data_type": "TEXT",
            "cardinality": "SINGLE",
            "properties": [],
            "user_data": {}
        },
        {
            "id": 7,
            "name": "price",
            "data_type": "INT",
            "cardinality": "SINGLE",
            "properties": [],
            "user_data": {}
        }
    ]
}

1.2.4 根据name获取PropertyKey

Method & Url
GET http://localhost:8080/graphs/hugegraph/schema/propertykeys/age

其中,age为要获取的 PropertyKey 的名称

Response Status
200
Response Body
{
    "id": 1,
    "name": "age",
    "data_type": "INT",
    "cardinality": "SINGLE",
    "aggregate_type": "NONE",
    "write_type": "OLTP",
    "properties": [],
    "status": "CREATED",
    "user_data": {
        "min": 0,
        "max": 100,
        "~create_time": "2022-05-13 13:47:23.745"
    }
}

1.2.5 根据 name 删除 PropertyKey

Method & Url
DELETE http://localhost:8080/graphs/hugegraph/schema/propertykeys/age

其中,age为要删除的 PropertyKey 的名称

Response Status
202
Response Body
{
    "task_id" : 0
}

1.3 - VertexLabel API

1.3 VertexLabel

假设已经创建好了1.1.3中列出来的 PropertyKeys

Params说明

  • id:顶点类型id值
  • name:顶点类型名称,必填
  • id_strategy: 顶点类型的ID策略,主键ID、自动生成、自定义字符串、自定义数字、自定义UUID,默认主键ID
  • properties: 顶点类型关联的属性类型
  • primary_keys: 主键属性,当ID策略为PRIMARY_KEY时必须有值,其他ID策略时必须为空;
  • enable_label_index: 是否开启类型索引,默认关闭
  • index_names:顶点类型创建的索引,详情见3.4
  • nullable_keys:可为空的属性
  • user_data:设置顶点类型的通用信息,作用同属性类型

1.3.1 创建一个VertexLabel

Method & Url
POST http://localhost:8080/graphs/hugegraph/schema/vertexlabels
Request Body
{
    "name": "person",
    "id_strategy": "DEFAULT",
    "properties": [
        "name",
        "age"
    ],
    "primary_keys": [
        "name"
    ],
    "nullable_keys": [],
    "enable_label_index": true
}
Response Status
201
Response Body
{
    "id": 1,
    "primary_keys": [
        "name"
    ],
    "id_strategy": "PRIMARY_KEY",
    "name": "person2",
    "index_names": [
    ],
    "properties": [
        "name",
        "age"
    ],
    "nullable_keys": [
    ],
    "enable_label_index": true,
    "user_data": {}
}

从 hugegraph-server v0.11.2 版本开始支持顶点的 TTL 功能。顶点的 TTL 是通过 VertexLabel 来设置的。比如希望 person 类型的顶点存活时间为一天,需要在创建 person VertexLabel 的时候将 TTL 字段设置为 86400000,即单位为毫秒。

{
    "name": "person",
    "id_strategy": "DEFAULT",
    "properties": [
        "name",
        "age"
    ],
    "primary_keys": [
        "name"
    ],
    "nullable_keys": [],
    "ttl": 86400000,
    "enable_label_index": true
}

另外,当顶点中带有"创建时间"的属性且希望以"创建时间"属性作为计算顶点存活时间的起点时,可以设置 VertexLabel 中的 ttl_start_time 字段。比如 person VertexLabel 有 createdTime 属性,且 createdTime 是 Date 类型的参数,希望 person 类型的顶点从创建开始存活一天的时间,那么创建 person VertexLabel 的 Request Body 如下:

{
    "name": "person",
    "id_strategy": "DEFAULT",
    "properties": [
        "name",
        "age",
        "createdTime"
    ],
    "primary_keys": [
        "name"
    ],
    "nullable_keys": [],
    "ttl": 86400000,
    "ttl_start_time": "createdTime",
    "enable_label_index": true
}

1.3.2 为已存在的VertexLabel添加properties或userdata,或者移除userdata(目前不支持移除properties)

Params
  • action: 表示当前行为是添加还是移除,取值为append(添加)和eliminate(移除)
Method & Url
PUT http://localhost:8080/graphs/hugegraph/schema/vertexlabels/person?action=append
Request Body
{
    "name": "person",
    "properties": [
        "city"
    ],
    "nullable_keys": ["city"],
    "user_data": {
        "super": "animal"
    }
}
Response Status
200
Response Body
{
    "id": 1,
    "primary_keys": [
        "name"
    ],
    "id_strategy": "PRIMARY_KEY",
    "name": "person",
    "index_names": [
    ],
    "properties": [
        "city",
        "name",
        "age"
    ],
    "nullable_keys": [
        "city"
    ],
    "enable_label_index": true,
    "user_data": {
        "super": "animal"
    }
}

1.3.3 获取所有的VertexLabel

Method & Url
GET http://localhost:8080/graphs/hugegraph/schema/vertexlabels
Response Status
200
Response Body
{
    "vertexlabels": [
        {
            "id": 1,
            "primary_keys": [
                "name"
            ],
            "id_strategy": "PRIMARY_KEY",
            "name": "person",
            "index_names": [
            ],
            "properties": [
                "city",
                "name",
                "age"
            ],
            "nullable_keys": [
                "city"
            ],
            "enable_label_index": true,
            "user_data": {
                "super": "animal"
            }
        },
        {
            "id": 2,
            "primary_keys": [
                "name"
            ],
            "id_strategy": "PRIMARY_KEY",
            "name": "software",
            "index_names": [
            ],
            "properties": [
                "price",
                "name",
                "lang"
            ],
            "nullable_keys": [
                "price"
            ],
            "enable_label_index": false,
            "user_data": {}
        }
    ]
}

1.3.4 根据name获取VertexLabel

Method & Url
GET http://localhost:8080/graphs/hugegraph/schema/vertexlabels/person
Response Status
200
Response Body
{
    "id": 1,
    "primary_keys": [
        "name"
    ],
    "id_strategy": "PRIMARY_KEY",
    "name": "person",
    "index_names": [
    ],
    "properties": [
        "city",
        "name",
        "age"
    ],
    "nullable_keys": [
        "city"
    ],
    "enable_label_index": true,
    "user_data": {
        "super": "animal"
    }
}

1.3.5 根据name删除VertexLabel

删除 VertexLabel 会导致删除对应的顶点以及相关的索引数据,会产生一个异步任务

Method & Url
DELETE http://localhost:8080/graphs/hugegraph/schema/vertexlabels/person
Response Status
202
Response Body
{
    "task_id": 1
}

注:

可以通过GET http://localhost:8080/graphs/hugegraph/tasks/1(其中"1"是task_id)来查询异步任务的执行状态,更多异步任务RESTful API

1.4 - EdgeLabel API

1.4 EdgeLabel

假设已经创建好了1.2.3中的 PropertyKeys 和 1.3.3中的 VertexLabels

Params说明

  • name:顶点类型名称,必填
  • source_label: 源顶点类型的名称,必填
  • target_label: 目标顶点类型的名称,必填
  • frequency:两个点之间是否可以有多条边,可以取值SINGLE和MULTIPLE,非必填,默认值SINGLE
  • properties: 边类型关联的属性类型,选填
  • sort_keys: 当允许关联多次时,指定区分键属性列表
  • nullable_keys:可为空的属性,选填,默认可为空
  • enable_label_index: 是否开启类型索引,默认关闭

1.4.1 创建一个EdgeLabel

Method & Url
POST http://localhost:8080/graphs/hugegraph/schema/edgelabels
Request Body
{
    "name": "created",
    "source_label": "person",
    "target_label": "software",
    "frequency": "SINGLE",
    "properties": [
        "date"
    ],
    "sort_keys": [],
    "nullable_keys": [],
    "enable_label_index": true
}
Response Status
201
Response Body
{
    "id": 1,
    "sort_keys": [
    ],
    "source_label": "person",
    "name": "created",
    "index_names": [
    ],
    "properties": [
        "date"
    ],
    "target_label": "software",
    "frequency": "SINGLE",
    "nullable_keys": [
    ],
    "enable_label_index": true,
    "user_data": {}
}

从 hugegraph-server v0.11.2 版本开始支持边的 TTL 功能。边的 TTL 是通过 EdgeLabel 来设置的。比如希望 knows 类型的边存活时间为一天,需要在创建 knows EdgeLabel 的时候将 TTL 字段设置为 86400000,即单位为毫秒。

{
    "id": 1,
    "sort_keys": [
    ],
    "source_label": "person",
    "name": "knows",
    "index_names": [
    ],
    "properties": [
        "date",
        "createdTime"
    ],
    "target_label": "person",
    "frequency": "SINGLE",
    "nullable_keys": [
    ],
    "enable_label_index": true,
    "ttl": 86400000,
    "user_data": {}
}

另外,当边中带有"创建时间"的属性且希望以"创建时间"属性作为计算边存活时间的起点时,可以设置 EdgeLabel 中的 ttl_start_time 字段。比如 knows EdgeLabel 有 createdTime 属性,且 createdTime 是 Date 类型的参数,希望 knows 类型的边从创建开始存活一天的时间,那么创建 knows EdgeLabel 的 Request Body 如下:

{
    "id": 1,
    "sort_keys": [
    ],
    "source_label": "person",
    "name": "knows",
    "index_names": [
    ],
    "properties": [
        "date",
        "createdTime"
    ],
    "target_label": "person",
    "frequency": "SINGLE",
    "nullable_keys": [
    ],
    "enable_label_index": true,
    "ttl": 86400000,
    "ttl_start_time": "createdTime",
    "user_data": {}
}

1.4.2 为已存在的EdgeLabel添加properties或userdata,或者移除userdata(目前不支持移除properties)

Params
  • action: 表示当前行为是添加还是移除,取值为append(添加)和eliminate(移除)
Method & Url
PUT http://localhost:8080/graphs/hugegraph/schema/edgelabels/created?action=append
Request Body
{
    "name": "created",
    "properties": [
        "weight"
    ],
    "nullable_keys": [
        "weight"
    ]
}
Response Status
200
Response Body
{
    "id": 2,
    "sort_keys": [
    ],
    "source_label": "person",
    "name": "created",
    "index_names": [
    ],
    "properties": [
        "date",
        "weight"
    ],
    "target_label": "software",
    "frequency": "SINGLE",
    "nullable_keys": [
        "weight"
    ],
    "enable_label_index": true,
    "user_data": {}
}

1.4.3 获取所有的EdgeLabel

Method & Url
GET http://localhost:8080/graphs/hugegraph/schema/edgelabels
Response Status
200
Response Body
{
    "edgelabels": [
        {
            "id": 1,
            "sort_keys": [
            ],
            "source_label": "person",
            "name": "created",
            "index_names": [
            ],
            "properties": [
                "date",
                "weight"
            ],
            "target_label": "software",
            "frequency": "SINGLE",
            "nullable_keys": [
                "weight"
            ],
            "enable_label_index": true,
            "user_data": {}
        },
        {
            "id": 2,
            "sort_keys": [
            ],
            "source_label": "person",
            "name": "knows",
            "index_names": [
            ],
            "properties": [
                "date",
                "weight"
            ],
            "target_label": "person",
            "frequency": "SINGLE",
            "nullable_keys": [
            ],
            "enable_label_index": false,
            "user_data": {}
        }
    ]
}

1.4.4 根据name获取EdgeLabel

Method & Url
GET http://localhost:8080/graphs/hugegraph/schema/edgelabels/created
Response Status
200
Response Body
{
    "id": 1,
    "sort_keys": [
    ],
    "source_label": "person",
    "name": "created",
    "index_names": [
    ],
    "properties": [
        "date",
        "city",
        "weight"
    ],
    "target_label": "software",
    "frequency": "SINGLE",
    "nullable_keys": [
        "city",
        "weight"
    ],
    "enable_label_index": true,
    "user_data": {}
}

1.4.5 根据name删除EdgeLabel

删除 EdgeLabel 会导致删除对应的边以及相关的索引数据,会产生一个异步任务

Method & Url
DELETE http://localhost:8080/graphs/hugegraph/schema/edgelabels/created
Response Status
202
Response Body
{
    "task_id": 1
}

注:

可以通过GET http://localhost:8080/graphs/hugegraph/tasks/1(其中"1"是task_id)来查询异步任务的执行状态,更多异步任务RESTful API

1.5 - IndexLabel API

1.5 IndexLabel

假设已经创建好了1.1.3中的 PropertyKeys 、1.2.3中的 VertexLabels 以及 1.3.3中的 EdgeLabels

1.5.1 创建一个IndexLabel

Method & Url
POST http://localhost:8080/graphs/hugegraph/schema/indexlabels
Request Body
{
    "name": "personByCity",
    "base_type": "VERTEX_LABEL",
    "base_value": "person",
    "index_type": "SECONDARY",
    "fields": [
        "city"
    ]
}
Response Status
202
Response Body
{
    "index_label": {
        "id": 1,
        "base_type": "VERTEX_LABEL",
        "base_value": "person",
        "name": "personByCity",
        "fields": [
            "city"
        ],
        "index_type": "SECONDARY"
    },
    "task_id": 2
}

1.5.2 获取所有的IndexLabel

Method & Url
GET http://localhost:8080/graphs/hugegraph/schema/indexlabels
Response Status
200
Response Body
{
    "indexlabels": [
        {
            "id": 3,
            "base_type": "VERTEX_LABEL",
            "base_value": "software",
            "name": "softwareByPrice",
            "fields": [
                "price"
            ],
            "index_type": "RANGE"
        },
        {
            "id": 4,
            "base_type": "EDGE_LABEL",
            "base_value": "created",
            "name": "createdByDate",
            "fields": [
                "date"
            ],
            "index_type": "SECONDARY"
        },
        {
            "id": 1,
            "base_type": "VERTEX_LABEL",
            "base_value": "person",
            "name": "personByCity",
            "fields": [
                "city"
            ],
            "index_type": "SECONDARY"
        },
        {
            "id": 3,
            "base_type": "VERTEX_LABEL",
            "base_value": "person",
            "name": "personByAgeAndCity",
            "fields": [
                "age",
                "city"
            ],
            "index_type": "SECONDARY"
        }
    ]
}

1.5.3 根据name获取IndexLabel

Method & Url
GET http://localhost:8080/graphs/hugegraph/schema/indexlabels/personByCity
Response Status
200
Response Body
{
    "id": 1,
    "base_type": "VERTEX_LABEL",
    "base_value": "person",
    "name": "personByCity",
    "fields": [
        "city"
    ],
    "index_type": "SECONDARY"
}

1.5.4 根据name删除IndexLabel

删除 IndexLabel 会导致删除相关的索引数据,会产生一个异步任务

Method & Url
DELETE http://localhost:8080/graphs/hugegraph/schema/indexlabels/personByCity
Response Status
202
Response Body
{
    "task_id": 1
}

注:

可以通过GET http://localhost:8080/graphs/hugegraph/tasks/1(其中"1"是task_id)来查询异步任务的执行状态,更多异步任务RESTful API

1.6 - Rebuild API

1.6 Rebuild

1.6.1 重建IndexLabel

Method & Url
PUT http://localhost:8080/graphs/hugegraph/jobs/rebuild/indexlabels/personByCity
Response Status
202
Response Body
{
    "task_id": 1
}

注:

可以通过GET http://localhost:8080/graphs/hugegraph/tasks/1(其中"1"是task_id)来查询异步任务的执行状态,更多异步任务RESTful API

1.6.2 VertexLabel对应的全部索引重建

Method & Url
PUT http://localhost:8080/graphs/hugegraph/jobs/rebuild/vertexlabels/person
Response Status
202
Response Body
{
    "task_id": 2
}

注:

可以通过GET http://localhost:8080/graphs/hugegraph/tasks/2(其中"2"是task_id)来查询异步任务的执行状态,更多异步任务RESTful API

1.6.3 EdgeLabel对应的全部索引重建

Method & Url
PUT http://localhost:8080/graphs/hugegraph/jobs/rebuild/edgelabels/created
Response Status
202
Response Body
{
    "task_id": 3
}

注:

可以通过GET http://localhost:8080/graphs/hugegraph/tasks/3(其中"3"是task_id)来查询异步任务的执行状态,更多异步任务RESTful API

1.7 - Vertex API

2.1 Vertex

顶点类型中的 Id 策略决定了顶点的 Id 类型,其对应的 id 类型如下:

Id_Strategyid type
AUTOMATICnumber
PRIMARY_KEYstring
CUSTOMIZE_STRINGstring
CUSTOMIZE_NUMBERnumber
CUSTOMIZE_UUIDuuid

顶点的 GET/PUT/DELETE API 中 url 的 id 部分应该传入带有类型信息的 id 值,这个类型信息通过 json 串是否带引号来表示,也就是说:

  • 当 id 类型为 number 时,url 中的 id 不带引号,例如 xxx/vertices/123456
  • 当 id 类型为 string 时,url 中的 id 带引号,例如 xxx/vertices/"123456"

接下来的示例需要先根据以下 groovy 脚本创建图 schema

schema.propertyKey("name").asText().ifNotExist().create();
schema.propertyKey("age").asInt().ifNotExist().create();
schema.propertyKey("city").asText().ifNotExist().create();
schema.propertyKey("weight").asDouble().ifNotExist().create();
schema.propertyKey("lang").asText().ifNotExist().create();
schema.propertyKey("price").asDouble().ifNotExist().create();
schema.propertyKey("hobby").asText().valueList().ifNotExist().create();

schema.vertexLabel("person").properties("name", "age", "city", "weight", "hobby").primaryKeys("name").nullableKeys("age", "city", "weight", "hobby").ifNotExist().create();
schema.vertexLabel("software").properties("name", "lang", "price").primaryKeys("name").nullableKeys("lang", "price").ifNotExist().create();

schema.indexLabel("personByAge").onV("person").by("age").range().ifNotExist().create();

2.1.1 创建一个顶点

Method & Url
POST http://localhost:8080/graphs/hugegraph/graph/vertices
Request Body
{
    "label": "person",
    "properties": {
        "name": "marko",
        "age": 29
    }
}
Response Status
201
Response Body
{
    "id": "1:marko",
    "label": "person",
    "type": "vertex",
    "properties": {
        "name": "marko",
        "age": 29
    }
}

2.1.2 创建多个顶点

Method & Url
POST http://localhost:8080/graphs/hugegraph/graph/vertices/batch
Request Body
[
    {
        "label": "person",
        "properties": {
            "name": "marko",
            "age": 29
        }
    },
    {
        "label": "software",
        "properties": {
            "name": "ripple",
            "lang": "java",
            "price": 199
        }
    }
]
Response Status
201
Response Body
[
    "1:marko",
    "2:ripple"
]

2.1.3 更新顶点属性

Method & Url
PUT http://127.0.0.1:8080/graphs/hugegraph/graph/vertices/"1:marko"?action=append
Request Body
{
    "label": "person",
    "properties": {
        "age": 30,
        "city": "Beijing"
    }
}

注意:属性的取值有三种类别,分别为single、set和list。single表示增加或更新属性值,set或list表示追加属性值。

Response Status
200
Response Body
{
    "id": "1:marko",
    "label": "person",
    "type": "vertex",
    "properties": {
        "name": "marko",
        "age": 30,
        "city": "Beijing"
    }
}

2.1.4 批量更新顶点属性

功能说明

批量更新顶点的属性时,可以选择多种更新策略,如下:

  • SUM: 数值累加
  • BIGGER: 原值和新值(数字、日期)取更大的
  • SMALLER: 原值和新值(数字、日期)取更小的
  • UNION: Set属性取并集
  • INTERSECTION: Set属性取交集
  • APPEND: List属性追加元素
  • ELIMINATE: List/Set属性删除元素
  • OVERRIDE: 覆盖已有属性,如果新属性为null,则仍然使用旧属性

假设原顶点的属性如下:

{
    "vertices": [
        {
            "id": "2:lop",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "lop",
                "lang": "java",
                "price": 328
            }
        },
        {
            "id": "1:josh",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "josh",
                "age": 32,
                "city": "Beijing",
                "weight": 0.1,
                "hobby": [
                    "reading",
                    "football"
                ]
            }
        }
    ]
}

通过以下命令新增顶点:

curl -H "Content-Type: application/json" -d '[{"label":"person","properties":{"name":"josh","age":32,"city":"Beijing","weight":0.1,"hobby":["reading","football"]}},{"label":"software","properties":{"name":"lop","lang":"java","price":328}}]' http:///127.0.0.1:8080/graphs/hugegraph/graph/vertices/batch
Method & Url
PUT http://127.0.0.1:8080/graphs/hugegraph/graph/vertices/batch
Request Body
{
    "vertices": [
        {
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "lop",
                "lang": "c++",
                "price": 299
            }
        },
        {
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "josh",
                "city": "Shanghai",
                "weight": 0.2,
                "hobby": [
                    "swimming"
                ]
            }
        }
    ],
    "update_strategies": {
        "price": "BIGGER",
        "age": "OVERRIDE",
        "city": "OVERRIDE",
        "weight": "SUM",
        "hobby": "UNION"
    },
    "create_if_not_exist": true
}
Response Status
200
Response Body
{
    "vertices": [
        {
            "id": "2:lop",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "lop",
                "lang": "c++",
                "price": 328
            }
        },
        {
            "id": "1:josh",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "josh",
                "age": 32,
                "city": "Shanghai",
                "weight": 0.3,
                "hobby": [
                    "reading",
                    "football",
                    "swimming"
                ]
            }
        }
    ]
}

结果分析如下:

  • lang 属性未指定更新策略,直接用新值覆盖旧值,无论新值是否为null;
  • price 属性指定 BIGGER 的更新策略,旧属性值为328,新属性值为299,所以仍然保留了旧属性值328;
  • age 属性指定 OVERRIDE 更新策略,而新属性值中未传入age,相当于age为null,所以仍然保留了原属性值32;
  • city 属性也指定了 OVERRIDE 更新策略,且新属性值不为null,所以覆盖了旧值;
  • weight 属性指定了 SUM 更新策略,旧属性值为0.1,新属性值为0.2,最后的值为0.3;
  • hobby 属性(基数为Set)指定了 UNION 更新策略,所以新值与旧值取了并集;

其他更新策略的使用方式与此类似,此处不再详述。

2.1.5 删除顶点属性

Method & Url
PUT http://127.0.0.1:8080/graphs/hugegraph/graph/vertices/"1:marko"?action=eliminate
Request Body
{
    "label": "person",
    "properties": {
        "city": "Beijing"
    }
}

注意:这里会直接删除属性(删除key和所有value),无论其属性的取值是single、set或list。

Response Status
200
Response Body
{
    "id": "1:marko",
    "label": "person",
    "type": "vertex",
    "properties": {
        "name": "marko",
        "age": 30
    }
}

2.1.6 获取符合条件的顶点

Params
  • label: 顶点的类型
  • properties: 属性键值对(查询属性的前提是该属性已经建立了索引)
  • limit: 查询结果的最大数目
  • page: 分页的页号

以上参数都是可选的,但如果提供了page参数,就必须同时提供limit参数,并且不能再提供其他参数。label, propertieslimit之间可以任意组合。

属性键值对由属性名称和属性值组成JSON格式的对象,可以使用多个属性键值对作为查询条件,属性值支持精确匹配和范围匹配,精确匹配的形式如properties={"age":29},范围匹配的形式如properties={"age":"P.gt(29)"},范围匹配支持以下表达式:

表达式说明
P.eq(number)属性值等于number的顶点
P.neq(number)属性值不等于number的顶点
P.lt(number)属性值小于number的顶点
P.lte(number)属性值小于等于number的顶点
P.gt(number)属性值大于number的顶点
P.gte(number)属性值大于等于number的顶点
P.between(number1,number2)属性值大于等于number1且小于number2的顶点
P.inside(number1,number2)属性值大于number1且小于number2的顶点
P.outside(number1,number2)属性值小于number1且大于number2的顶点
P.within(value1,value2,value3,…)属性值等于任何一个给定value的顶点

查询所有 age 为 29 且 label 为 person 的顶点

Method & Url
GET http://localhost:8080/graphs/hugegraph/graph/vertices?label=person&properties={"age":29}&limit=1
Response Status
200
Response Body
{
    "vertices": [
        {
            "id": "1:marko",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "marko",
                "age": 30
            }
        }
    ]
}

分页查询所有顶点,获取第一页(page不带参数值),限定3条

通过以下命令新增顶点:

curl -H "Content-Type: application/json" -d '[{"label":"person","properties":{"name":"peter","age":29,"city":"Shanghai"}},{"label":"person","properties":{"name":"vadas","age":27,"city":"Hongkong"}}]' http://localhost:8080/graphs/hugegraph/graph/vertices/batch
Method & Url
GET http://localhost:8080/graphs/hugegraph/graph/vertices?page&limit=3
Response Status
200
Response Body
{
    "vertices": [
        {
            "id": "2:lop",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "lop",
                "lang": "c++",
                "price": 328
            }
        },
        {
            "id": "1:josh",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "josh",
                "age": 32,
                "city": "Shanghai",
                "weight": 0.3,
                "hobby": [
                    "reading",
                    "football",
                    "swimming"
                ]
            }
        },
        {
            "id": "1:marko",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "marko",
                "age": 30
            }
        }
    ],
    "page": "CIYxOnBldGVyAAAAAAAAAAM="
}

返回的 body 里面是带有下一页的页号信息的,"page": "CIYxOnBldGVyAAAAAAAAAAM=",在查询下一页的时候将该值赋给 page 参数。

分页查询所有顶点,获取下一页(page带上上一页返回的page值),限定3条

Method & Url
GET http://localhost:8080/graphs/hugegraph/graph/vertices?page=CIYxOnBldGVyAAAAAAAAAAM=&limit=3
Response Status
200
Response Body
{
    "vertices": [
        {
            "id": "1:peter",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "peter",
                "age": 29,
                "city": "Shanghai"
            }
        },
        {
            "id": "1:vadas",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "vadas",
                "age": 27,
                "city": "Hongkong"
            }
        },
        {
            "id": "2:ripple",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "ripple",
                "lang": "java",
                "price": 199
            }
        }
    ],
    "page": null
}

"page": null时,表示已经没有下一页了(注:如果后端使用的是 Cassandra ,为了提高性能,当返回的页数刚好是最后一页时,返回的 page 值可能不为空,但是如果用这个 page 值再请求下一页数据时,就会返回 空数据page = null,其他情况也类似)

2.1.7 根据Id获取顶点

Method & Url
GET http://localhost:8080/graphs/hugegraph/graph/vertices/"1:marko"
Response Status
200
Response Body
{
    "id": "1:marko",
    "label": "person",
    "type": "vertex",
    "properties": {
        "name": "marko",
        "age": 30
    }
}

2.1.8 根据Id删除顶点

Params
  • label: 顶点类型,可选参数

仅根据Id删除顶点

Method & Url
DELETE http://localhost:8080/graphs/hugegraph/graph/vertices/"1:marko"
Response Status
204

根据Label+Id删除顶点

通过指定Label参数和Id来删除顶点时,一般来说其性能比仅根据Id删除会更好。

Method & Url
DELETE http://localhost:8080/graphs/hugegraph/graph/vertices/"1:marko"?label=person
Response Status
204

1.8 - Edge API

2.2 Edge

顶点 id 格式的修改也影响到了边的 id 以及源顶点和目标顶点 id 的格式

EdgeId 是由 src-vertex-id + direction + label + sort-values + tgt-vertex-id 拼接而成,但是这里的顶点 id 类型不是通过引号区分的,而是根据前缀区分:

  • 当 id 类型为 number 时,EdgeId 的顶点 id 前有一个前缀 L ,形如 “L123456>1»L987654”
  • 当 id 类型为 string 时,EdgeId 的顶点 id 前有一个前缀 S ,形如 “S1:peter>1»S2:lop”

接下来的示例需要先根据以下 groovy 脚本创建图 schema

import org.apache.hugegraph.HugeFactory
import org.apache.tinkerpop.gremlin.structure.T

conf = "conf/graphs/hugegraph.properties"
graph = HugeFactory.open(conf)
schema = graph.schema()

schema.propertyKey("name").asText().ifNotExist().create()
schema.propertyKey("age").asInt().ifNotExist().create()
schema.propertyKey("city").asText().ifNotExist().create()
schema.propertyKey("weight").asDouble().ifNotExist().create()
schema.propertyKey("lang").asText().ifNotExist().create()
schema.propertyKey("date").asText().ifNotExist().create()
schema.propertyKey("price").asInt().ifNotExist().create()

schema.vertexLabel("person").properties("name", "age", "city").primaryKeys("name").ifNotExist().create()
schema.vertexLabel("software").properties("name", "lang", "price").primaryKeys("name").ifNotExist().create()
schema.indexLabel("personByCity").onV("person").by("city").secondary().ifNotExist().create()
schema.indexLabel("personByAgeAndCity").onV("person").by("age", "city").secondary().ifNotExist().create()
schema.indexLabel("softwareByPrice").onV("software").by("price").range().ifNotExist().create()
schema.edgeLabel("knows").sourceLabel("person").targetLabel("person").properties("date", "weight").ifNotExist().create()
schema.edgeLabel("created").sourceLabel("person").targetLabel("software").properties("date", "weight").ifNotExist().create()
schema.indexLabel("createdByDate").onE("created").by("date").secondary().ifNotExist().create()
schema.indexLabel("createdByWeight").onE("created").by("weight").range().ifNotExist().create()
schema.indexLabel("knowsByWeight").onE("knows").by("weight").range().ifNotExist().create()

marko = graph.addVertex(T.label, "person", "name", "marko", "age", 29, "city", "Beijing")
vadas = graph.addVertex(T.label, "person", "name", "vadas", "age", 27, "city", "Hongkong")
lop = graph.addVertex(T.label, "software", "name", "lop", "lang", "java", "price", 328)
josh = graph.addVertex(T.label, "person", "name", "josh", "age", 32, "city", "Beijing")
ripple = graph.addVertex(T.label, "software", "name", "ripple", "lang", "java", "price", 199)
peter = graph.addVertex(T.label, "person", "name", "peter", "age", 35, "city", "Shanghai")

graph.tx().commit()
g = graph.traversal()

2.2.1 创建一条边

Params

路径参数说明:

  • graph:待操作的图

请求体说明:

  • label:边类型名称,必填
  • outV:源顶点 id,必填
  • inV:目标顶点 id,必填
  • outVLabel:源顶点类型,必填
  • inVLabel:目标顶点类型,必填
  • properties: 边关联的属性,对象内部结构为:
    1. name:属性名称
    2. value:属性值
Method & Url
POST http://localhost:8080/graphs/hugegraph/graph/edges
Request Body
{
    "label": "created",
    "outV": "1:marko",
    "inV": "2:lop",
    "outVLabel": "person",
    "inVLabel": "software",
    "properties": {
        "date": "20171210",
        "weight": 0.4
    }
}
Response Status
201
Response Body
{
    "id": "S1:marko>2>>S2:lop",
    "label": "created",
    "type": "edge",
    "outV": "1:marko",
    "outVLabel": "person",
    "inV": "2:lop",
    "inVLabel": "software",
    "properties": {
        "weight": 0.4,
        "date": "20171210"
    }
}

2.2.2 创建多条边

Params

路径参数说明:

  • graph:待操作的图

请求参数说明:

  • check_vertex:是否检查顶点存在 (true | false),当设置为 true 而待插入边的源顶点或目标顶点不存在时会报错,默认为 true

请求体说明:

  • 边信息的列表
Method & Url
POST http://localhost:8080/graphs/hugegraph/graph/edges/batch
Request Body
[
    {
        "label": "knows",
        "outV": "1:marko",
        "inV": "1:vadas",
        "outVLabel": "person",
        "inVLabel": "person",
        "properties": {
            "date": "20160110",
            "weight": 0.5
        }
    },
    {
        "label": "knows",
        "outV": "1:marko",
        "inV": "1:josh",
        "outVLabel": "person",
        "inVLabel": "person",
        "properties": {
            "date": "20130220",
            "weight": 1.0
        }
    }
]
Response Status
201
Response Body
[
    "S1:marko>1>>S1:vadas",
    "S1:marko>1>>S1:josh"
]

2.2.3 更新边属性

Params

路径参数说明:

  • graph:待操作的图
  • id:待操作的边 id

请求参数说明:

  • action:append 操作

请求体说明:

  • 边信息
Method & Url
PUT http://localhost:8080/graphs/hugegraph/graph/edges/S1:marko>2>>S2:lop?action=append
Request Body
{
    "properties": {
        "weight": 1.0
    }
}

注意:属性的取值是有三种类别的,分别是 single、set 和 list。如果是 single,表示增加或更新属性值;如果是 set 或 list,则表示追加属性值

Response Status
200
Response Body
{
    "id": "S1:marko>2>>S2:lop",
    "label": "created",
    "type": "edge",
    "outV": "1:marko",
    "outVLabel": "person",
    "inV": "2:lop",
    "inVLabel": "software",
    "properties": {
        "weight": 1.0,
        "date": "20171210"
    }
}

2.2.4 批量更新边属性

Params

路径参数说明:

  • graph:待操作的图

请求体说明:

  • edges:边信息的列表
  • update_strategies:对于每个属性,可以单独设置其更新策略,包括:
    • SUM:仅支持 number 类型
    • BIGGER/SMALLER:仅支持 date/number 类型
    • UNION/INTERSECTION:仅支持 set 类型
    • APPEND/ELIMINATE:仅支持 collection 类型
    • OVERRIDE
  • check_vertex:是否检查顶点存在 (true | false),当设置为 true 而待插入边的源顶点或目标顶点不存在时会报错,默认为 true
  • create_if_not_exist:目前只支持设定为 true
Method & Url
PUT http://127.0.0.1:8080/graphs/hugegraph/graph/edges/batch
Request Body
{
    "edges": [
        {
            "label": "knows",
            "outV": "1:marko",
            "inV": "1:vadas",
            "outVLabel": "person",
            "inVLabel": "person",
            "properties": {
                "date": "20160111",
                "weight": 1.0
            }
        },
        {
            "label": "knows",
            "outV": "1:marko",
            "inV": "1:josh",
            "outVLabel": "person",
            "inVLabel": "person",
            "properties": {
                "date": "20130221",
                "weight": 0.5
            }
        }
    ],
    "update_strategies": {
        "weight": "SUM",
        "date": "OVERRIDE"
    },
    "check_vertex": false,
    "create_if_not_exist": true
}
Response Status
200
Response Body
{
    "edges": [
        {
            "id": "S1:marko>1>>S1:vadas",
            "label": "knows",
            "type": "edge",
            "outV": "1:marko",
            "outVLabel": "person",
            "inV": "1:vadas",
            "inVLabel": "person",
            "properties": {
                "weight": 1.5,
                "date": "20160111"
            }
        },
        {
            "id": "S1:marko>1>>S1:josh",
            "label": "knows",
            "type": "edge",
            "outV": "1:marko",
            "outVLabel": "person",
            "inV": "1:josh",
            "inVLabel": "person",
            "properties": {
                "weight": 1.5,
                "date": "20130221"
            }
        }
    ]
}

2.2.5 删除边属性

Params

路径参数说明:

  • graph:待操作的图
  • id:待操作的边 id

请求参数说明:

  • action:eliminate 操作

请求体说明:

  • 边信息
Method & Url
PUT http://localhost:8080/graphs/hugegraph/graph/edges/S1:marko>2>>S2:lop?action=eliminate
Request Body
{
    "properties": {
        "weight": 1.0
    }
}

注意:这里会直接删除属性(删除 key 和所有 value),无论其属性的取值是 single、set 或 list

Response Status
400
Response Body

无法删除未设置为 nullable 的属性

{
    "exception": "class java.lang.IllegalArgumentException",
    "message": "Can't remove non-null edge property 'p[weight->1.0]'",
    "cause": ""
}

2.2.6 获取符合条件的边

Params

路径参数说明:

  • graph:待操作的图

请求参数说明:

  • vertex_id: 顶点 id
  • direction: 边的方向 (OUT | IN | BOTH),默认为 BOTH
  • label: 边的标签
  • properties: 属性键值对 (根据属性查询的前提是预先建立了索引)
  • keep_start_p: 默认为 false,当设置为 true 后,不会自动转义范围匹配输入的表达式,例如此时 properties={"age":"P.gt(0.8)"} 会被理解为精确匹配,即 age 属性等于 “P.gt(0.8)”
  • offset:偏移,默认为 0
  • limit: 查询数目,默认为 100
  • page: 页号

属性键值对由 JSON 格式的属性名称和属性值组成,允许多个属性键值对作为查询条件,属性值支持精确匹配和范围匹配,精确匹配时形如 properties={"weight":0.8},范围匹配时形如 properties={"age":"P.gt(0.8)"},范围匹配支持的表达式如下:

表达式说明
P.eq(number)属性值等于 number 的边
P.neq(number)属性值不等于 number 的边
P.lt(number)属性值小于 number 的边
P.lte(number)属性值小于等于 number 的边
P.gt(number)属性值大于 number 的边
P.gte(number)属性值大于等于 number 的边
P.between(number1,number2)属性值大于等于 number1 且小于 number2 的边
P.inside(number1,number2)属性值大于 number1 且小于 number2 的边
P.outside(number1,number2)属性值小于 number1 且大于 number2 的边
P.within(value1,value2,value3,…)属性值等于任何一个给定 value 的边
P.textcontains(value)属性值包含给定 value 的边 (string 类型)
P.contains(value)属性值包含给定 value 的边 (collection 类型)

查询与顶点 person:marko(vertex_id=“1:marko”) 相连且 label 为 knows 的且 date 属性等于 “20160111” 的边

Method & Url
GET http://127.0.0.1:8080/graphs/hugegraph/graph/edges?vertex_id="1:marko"&label=knows&properties={"date":"P.within(\"20160111\")"}
Response Status
200
Response Body
{
    "edges": [
        {
            "id": "S1:marko>1>>S1:vadas",
            "label": "knows",
            "type": "edge",
            "outV": "1:marko",
            "outVLabel": "person",
            "inV": "1:vadas",
            "inVLabel": "person",
            "properties": {
                "weight": 1.5,
                "date": "20160111"
            }
        }
    ]
}

分页查询所有边,获取第一页(page 不带参数值),限定 2 条

Method & Url
GET http://127.0.0.1:8080/graphs/hugegraph/graph/edges?page&limit=2
Response Status
200
Response Body
{
    "edges": [
        {
            "id": "S1:marko>1>>S1:josh",
            "label": "knows",
            "type": "edge",
            "outV": "1:marko",
            "outVLabel": "person",
            "inV": "1:josh",
            "inVLabel": "person",
            "properties": {
                "weight": 1.5,
                "date": "20130221"
            }
        },
        {
            "id": "S1:marko>1>>S1:vadas",
            "label": "knows",
            "type": "edge",
            "outV": "1:marko",
            "outVLabel": "person",
            "inV": "1:vadas",
            "inVLabel": "person",
            "properties": {
                "weight": 1.5,
                "date": "20160111"
            }
        }
    ],
    "page": "EoYxOm1hcmtvgggCAIQyOmxvcAAAAAAAAAAC"
}

返回的 body 里面是带有下一页的页号信息的,"page": "EoYxOm1hcmtvgggCAIQyOmxvcAAAAAAAAAAC",在查询下一页的时候将该值赋给 page 参数

分页查询所有边,获取下一页(page 带上上一页返回的 page 值),限定 2 条

Method & Url
GET http://127.0.0.1:8080/graphs/hugegraph/graph/edges?page=EoYxOm1hcmtvgggCAIQyOmxvcAAAAAAAAAAC&limit=2
Response Status
200
Response Body
{
    "edges": [
        {
            "id": "S1:marko>2>>S2:lop",
            "label": "created",
            "type": "edge",
            "outV": "1:marko",
            "outVLabel": "person",
            "inV": "2:lop",
            "inVLabel": "software",
            "properties": {
                "weight": 1.0,
                "date": "20171210"
            }
        }
    ],
    "page": null
}

此时 "page": null 表示已经没有下一页了

注:后端为 Cassandra 时,为了性能考虑,返回页恰好为最后一页时,返回 page 值可能非空,通过该 page 再请求下一页数据时则返回 空数据page = null,其他情况类似

2.2.7 根据 id 获取边

Params

路径参数说明:

  • graph:待操作的图
  • id:待操作的边 id
Method & Url
GET http://localhost:8080/graphs/hugegraph/graph/edges/S1:marko>2>>S2:lop
Response Status
200
Response Body
{
    "id": "S1:marko>2>>S2:lop",
    "label": "created",
    "type": "edge",
    "outV": "1:marko",
    "outVLabel": "person",
    "inV": "2:lop",
    "inVLabel": "software",
    "properties": {
        "weight": 1.0,
        "date": "20171210"
    }
}

2.2.8 根据 id 删除边

Params

路径参数说明:

  • graph:待操作的图
  • id:待操作的边 id

请求参数说明:

  • label: 边的标签

仅根据 id 删除边

Method & Url
DELETE http://localhost:8080/graphs/hugegraph/graph/edges/S1:marko>2>>S2:lop
Response Status
204

根据 label + id 删除边

通过指定 label 参数和 id 来删除边时,一般来说其性能比仅根据 id 删除会更好

Method & Url
DELETE http://localhost:8080/graphs/hugegraph/graph/edges/S1:marko>1>>S1:vadas?label=knows
Response Status
204

1.9 - Traverser API

3.1 traverser API概述

HugeGraphServer为HugeGraph图数据库提供了RESTful API接口。除了顶点和边的CRUD基本操作以外,还提供了一些遍历(traverser)方法,我们称为traverser API。这些遍历方法实现了一些复杂的图算法,方便用户对图进行分析和挖掘。

HugeGraph支持的Traverser API包括:

  • K-out API,根据起始顶点,查找恰好N步可达的邻居,分为基础版和高级版:
    • 基础版使用GET方法,根据起始顶点,查找恰好N步可达的邻居
    • 高级版使用POST方法,根据起始顶点,查找恰好N步可达的邻居,与基础版的不同在于:
      • 支持只统计邻居数量
      • 支持顶点和边属性过滤
      • 支持返回到达邻居的最短路径
  • K-neighbor API,根据起始顶点,查找N步以内可达的所有邻居,分为基础版和高级版:
    • 基础版使用GET方法,根据起始顶点,查找N步以内可达的所有邻居
    • 高级版使用POST方法,根据起始顶点,查找N步以内可达的所有邻居,与基础版的不同在于:
      • 支持只统计邻居数量
      • 支持顶点和边属性过滤
      • 支持返回到达邻居的最短路径
  • Same Neighbors, 查询两个顶点的共同邻居
  • Jaccard Similarity API,计算jaccard相似度,包括两种:
    • 一种是使用GET方法,计算两个顶点的邻居的相似度(交并比)
    • 一种是使用POST方法,在全图中查找与起点的jaccard similarity最高的N个点
  • Shortest Path API,查找两个顶点之间的最短路径
  • All Shortest Paths,查找两个顶点间的全部最短路径
  • Weighted Shortest Path,查找起点到目标点的带权最短路径
  • Single Source Shortest Path,查找一个点到其他各个点的加权最短路径
  • Multi Node Shortest Path,查找指定顶点集之间两两最短路径
  • Paths API,查找两个顶点间的全部路径,分为基础版和高级版:
    • 基础版使用GET方法,根据起点和终点,查找两个顶点间的全部路径
    • 高级版使用POST方法,根据一组起点和一组终点,查找两个集合间符合条件的全部路径
  • Customized Paths API,从一批顶点出发,按(一种)模式遍历经过的全部路径
  • Template Path API,指定起点和终点以及起点和终点间路径信息,查找符合的路径
  • Crosspoints API,查找两个顶点的交点(共同祖先或者共同子孙)
  • Customized Crosspoints API,从一批顶点出发,按多种模式遍历,最后一步到达的顶点的交点
  • Rings API,从起始顶点出发,可到达的环路路径
  • Rays API,从起始顶点出发,可到达边界的路径(即无环路径)
  • Fusiform Similarity API,查找一个顶点的梭形相似点
  • Vertices API
    • 按ID批量查询顶点;
    • 获取顶点的分区;
    • 按分区查询顶点;
  • Edges API
    • 按ID批量查询边;
    • 获取边的分区;
    • 按分区查询边;

3.2. traverser API详解

使用方法中的例子,都是基于TinkerPop官网给出的图:

tinkerpop示例图

数据导入程序如下:

public class Loader {
    public static void main(String[] args) {
        HugeClient client = new HugeClient("http://127.0.0.1:8080", "hugegraph");
        SchemaManager schema = client.schema();
        schema.propertyKey("name").asText().ifNotExist().create();
        schema.propertyKey("age").asInt().ifNotExist().create();
        schema.propertyKey("city").asText().ifNotExist().create();
        schema.propertyKey("weight").asDouble().ifNotExist().create();
        schema.propertyKey("lang").asText().ifNotExist().create();
        schema.propertyKey("date").asText().ifNotExist().create();
        schema.propertyKey("price").asInt().ifNotExist().create();

        schema.vertexLabel("person")
              .properties("name", "age", "city")
              .primaryKeys("name")
              .nullableKeys("age")
              .ifNotExist()
              .create();

        schema.vertexLabel("software")
              .properties("name", "lang", "price")
              .primaryKeys("name")
              .nullableKeys("price")
              .ifNotExist()
              .create();

        schema.indexLabel("personByCity")
              .onV("person")
              .by("city")
              .secondary()
              .ifNotExist()
              .create();

        schema.indexLabel("personByAgeAndCity")
              .onV("person")
              .by("age", "city")
              .secondary()
              .ifNotExist()
              .create();

        schema.indexLabel("softwareByPrice")
              .onV("software")
              .by("price")
              .range()
              .ifNotExist()
              .create();

        schema.edgeLabel("knows")
              .multiTimes()
              .sourceLabel("person")
              .targetLabel("person")
              .properties("date", "weight")
              .sortKeys("date")
              .nullableKeys("weight")
              .ifNotExist()
              .create();

        schema.edgeLabel("created")
              .sourceLabel("person").targetLabel("software")
              .properties("date", "weight")
              .nullableKeys("weight")
              .ifNotExist()
              .create();

        schema.indexLabel("createdByDate")
              .onE("created")
              .by("date")
              .secondary()
              .ifNotExist()
              .create();

        schema.indexLabel("createdByWeight")
              .onE("created")
              .by("weight")
              .range()
              .ifNotExist()
              .create();

        schema.indexLabel("knowsByWeight")
              .onE("knows")
              .by("weight")
              .range()
              .ifNotExist()
              .create();

        GraphManager graph = client.graph();
        Vertex marko = graph.addVertex(T.label, "person", "name", "marko",
                                       "age", 29, "city", "Beijing");
        Vertex vadas = graph.addVertex(T.label, "person", "name", "vadas",
                                       "age", 27, "city", "Hongkong");
        Vertex lop = graph.addVertex(T.label, "software", "name", "lop",
                                     "lang", "java", "price", 328);
        Vertex josh = graph.addVertex(T.label, "person", "name", "josh",
                                      "age", 32, "city", "Beijing");
        Vertex ripple = graph.addVertex(T.label, "software", "name", "ripple",
                                        "lang", "java", "price", 199);
        Vertex peter = graph.addVertex(T.label, "person", "name", "peter",
                                       "age", 35, "city", "Shanghai");

        marko.addEdge("knows", vadas, "date", "20160110", "weight", 0.5);
        marko.addEdge("knows", josh, "date", "20130220", "weight", 1.0);
        marko.addEdge("created", lop, "date", "20171210", "weight", 0.4);
        josh.addEdge("created", lop, "date", "20091111", "weight", 0.4);
        josh.addEdge("created", ripple, "date", "20171210", "weight", 1.0);
        peter.addEdge("created", lop, "date", "20170324", "weight", 0.2);
    }
}

顶点ID为:

"2:ripple",
"1:vadas",
"1:peter",
"1:josh",
"1:marko",
"2:lop"

边ID为:

"S1:peter>2>>S2:lop",
"S1:josh>2>>S2:lop",
"S1:josh>2>>S2:ripple",
"S1:marko>1>20130220>S1:josh",
"S1:marko>1>20160110>S1:vadas",
"S1:marko>2>>S2:lop"

3.2.1 K-out API(GET,基础版)

3.2.1.1 功能介绍

根据起始顶点、方向、边的类型(可选)和深度depth,查找从起始顶点出发恰好depth步可达的顶点

Params
  • source:起始顶点id,必填项
  • direction:起始顶点向外发散的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • max_depth:步数,必填项
  • label:边的类型,选填项,默认代表所有edge label
  • nearest:nearest为true时,代表起始顶点到达结果顶点的最短路径长度为depth,不存在更短的路径;nearest为false时,代表起始顶点到结果顶点有一条长度为depth的路径(未必最短且可以有环),选填项,默认为true
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • limit:返回的顶点的最大数目,选填项,默认为10000000
3.2.1.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/kout?source="1:marko"&max_depth=2
Response Status
200
Response Body
{
    "vertices":[
        "2:ripple",
        "1:peter"
    ]
}
3.2.1.3 适用场景

查找恰好N步关系可达的顶点。两个例子:

  • 家族关系中,查找一个人的所有孙子,person A通过连续的两条“儿子”边到达的顶点集合。
  • 社交关系中发现潜在好友,例如:与目标用户相隔两层朋友关系的用户,可以通过连续两条“朋友”边到达的顶点。

3.2.2 K-out API(POST,高级版)

3.2.2.1 功能介绍

根据起始顶点、步骤(包括方向、边类型和过滤属性)和深度depth,查找从起始顶点出发恰好depth步可达的顶点。

与K-out基础版的不同在于:

  • 支持只统计邻居数量
  • 支持边属性过滤
  • 支持返回到达邻居的最短路径
Params
  • source:起始顶点id,必填项
  • steps: 从起始点出发的Steps,必填项,结构如下:
    • direction:表示边的方向(OUT,IN,BOTH),默认是BOTH
    • edge_steps:边Step集合,支持对单边的类型和属性过滤,如果为空,则不过滤
      • label:边类型
      • properties:边属性
    • vertex_steps:顶点Step集合,支持对单点的类型和属性过滤,如果为空,则不过滤
      • label:顶点类型
      • properties:顶点属性
    • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,默认为 10000 (注: 0.12版之前 step 内仅支持 degree 作为参数名, 0.12开始统一使用 max_degree, 并向下兼容 degree 写法)
    • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • max_depth:步数,必填项
  • nearest:nearest为true时,代表起始顶点到达结果顶点的最短路径长度为depth,不存在更短的路径;nearest为false时,代表起始顶点到结果顶点有一条长度为depth的路径(未必最短且可以有环),选填项,默认为true
  • count_only:Boolean值,true表示只统计结果的数目,不返回具体结果;false表示返回具体的结果,默认为false
  • with_path:true表示返回起始点到每个邻居的最短路径,false表示不返回起始点到每个邻居的最短路径,选填项,默认为false
  • with_edge,选填项,默认为false:
    • 如果设置为true,则结果将包含所有边的完整信息,即路径中的所有边
      • 当with_path为true时,将返回所有路径中的边的完整信息
      • 当with_path为false时,不返回任何信息
    • 如果设置为false,则仅返回边的id
  • with_vertex,选填项,默认为false:
    • 如果设置为true,则结果将包含所有顶点的完整信息,即路径中的所有顶点
      • 当with_path为true时,将返回所有路径中的顶点的完整信息
      • 当with_path为false时,返回所有邻居顶点的完整信息
    • 如果设置为false,则仅返回顶点的id
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • limit:返回的顶点的最大数目,选填项,默认为10000000
  • traverse_mode: 遍历方式,可选择“breadth_first_search”或“depth_first_search”作为参数,默认为“breadth_first_search”
3.2.2.2 使用方法
Method & Url
POST http://localhost:8080/graphs/{graph}/traversers/kout
Request Body
{
    "source": "1:marko",
    "steps": {
        "direction": "BOTH",
        "edge_steps": [
            {
                "label": "knows",
                "properties": {
                    "weight": "P.gt(0.1)"
                }
            },
            {
                "label": "created",
                "properties": {
                    "weight": "P.gt(0.1)"
                }
            }
        ],
        "vertex_steps": [
            {
                "label": "person",
                "properties": {
                    "age": "P.lt(32)"
                }
            },
            {
                "label": "software",
                "properties": {}
            }
        ],
        "max_degree": 10000,
        "skip_degree": 100000
    },
    "max_depth": 1,
    "nearest": true,
    "limit": 10000,
    "with_vertex": true,
    "with_path": true,
    "with_edge": true
}
Response Status
200
Response Body
{
    "size": 2,
	"kout": [
        "1:vadas",
        "2:lop"
    ],
    "paths": [
        {
            "objects": [
                "1:marko",
                "2:lop"
            ]
        },
        {
            "objects": [
                "1:marko",
                "1:vadas"
            ]
        }
    ],
    "vertices": [
        {
            "id": "1:marko",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "marko",
                "age": 29,
                "city": "Beijing"
            }
        },
        {
            "id": "1:vadas",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "vadas",
                "age": 27,
                "city": "Hongkong"
            }
        },
        {
            "id": "2:lop",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "lop",
                "lang": "java",
                "price": 328
            }
        }
    ],
    "edges": [
        {
            "id": "S1:marko>1>20160110>S1:vadas",
            "label": "knows",
            "type": "edge",
            "outV": "1:marko",
            "outVLabel": "person",
            "inV": "1:vadas",
            "inVLabel": "person",
            "properties": {
                "weight": 0.5,
                "date": "20160110"
            }
        },
        {
            "id": "S1:marko>2>>S2:lop",
            "label": "created",
            "type": "edge",
            "outV": "1:marko",
            "outVLabel": "person",
            "inV": "2:lop",
            "inVLabel": "software",
            "properties": {
                "weight": 0.4,
                "date": "20171210"
            }
        }
    ]
}
3.2.2.3 适用场景

参见3.2.1.3

3.2.3 K-neighbor(GET,基础版)

3.2.3.1 功能介绍

根据起始顶点、方向、边的类型(可选)和深度depth,查找包括起始顶点在内、depth步之内可达的所有顶点

相当于:起始顶点、K-out(1)、K-out(2)、… 、K-out(max_depth)的并集

Params
  • source: 起始顶点id,必填项
  • direction:起始顶点向外发散的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • max_depth:步数,必填项
  • label:边的类型,选填项,默认代表所有edge label
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • limit:返回的顶点的最大数目,也即遍历过程中最大的访问的顶点数目,选填项,默认为10000000
3.2.3.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/kneighbor?source=“1:marko”&max_depth=2
Response Status
200
Response Body
{
    "vertices":[
        "2:ripple",
        "1:marko",
        "1:josh",
        "1:vadas",
        "1:peter",
        "2:lop"
    ]
}
3.2.3.3 适用场景

查找N步以内可达的所有顶点,例如:

  • 家族关系中,查找一个人五服以内所有子孙,person A通过连续的5条“亲子”边到达的顶点集合。
  • 社交关系中发现好友圈子,例如目标用户通过1条、2条、3条“朋友”边可到达的用户可以组成目标用户的朋友圈子

3.2.4 K-neighbor API(POST,高级版)

3.2.4.1 功能介绍

根据起始顶点、步骤(包括方向、边类型和过滤属性)和深度depth,查找从起始顶点出发depth步内可达的所有顶点。

与K-neighbor基础版的不同在于:

  • 支持只统计邻居数量
  • 支持边属性过滤
  • 支持返回到达邻居的最短路径
Params
  • source:起始顶点id,必填项
  • steps: 从起始点出发的Steps,必填项,结构如下:
    • direction:表示边的方向(OUT,IN,BOTH),默认是BOTH
    • 从起始点出发的Steps,必填项,结构如下:
      • direction:表示边的方向(OUT,IN,BOTH),默认是BOTH
      • edge_steps:边Step集合,支持对单边的类型和属性过滤,如果为空,则不过滤
        • label:边类型
        • properties:边属性
      • vertex_steps:顶点Step集合,支持对单点的类型和属性过滤,如果为空,则不过滤
        • label:顶点类型
        • properties:顶点属性
    • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,默认为 10000 (注: 0.12版之前 step 内仅支持 degree 作为参数名, 0.12开始统一使用 max_degree, 并向下兼容 degree 写法)
    • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • max_depth:步数,必填项
  • count_only:Boolean值,true表示只统计结果的数目,不返回具体结果;false表示返回具体的结果,默认为false
  • with_path:true表示返回起始点到每个邻居的最短路径,false表示不返回起始点到每个邻居的最短路径,选填项,默认为false
  • with_edge,选填项,默认为false:
    • 如果设置为true,则结果将包含所有边的完整信息,即路径中的所有边
      • 当with_path为true时,将返回所有路径中的边的完整信息
      • 当with_path为false时,不返回任何信息
    • 如果设置为false,则仅返回边的id
  • with_vertex,选填项,默认为false:
    • 如果设置为true,则结果将包含所有顶点的完整信息,即路径中的所有顶点
      • 当with_path为true时,将返回所有路径中的顶点的完整信息
      • 当with_path为false时,返回所有邻居顶点的完整信息
    • 如果设置为false,则仅返回顶点的id
  • limit:返回的顶点的最大数目,选填项,默认为10000000
3.2.4.2 使用方法
Method & Url
POST http://localhost:8080/graphs/{graph}/traversers/kneighbor
Request Body
{
  	"source": "1:marko",
  	"steps": {
  	  	"direction": "BOTH",
  	  	"edge_steps": [
  	  	    {
  	  	        "label": "knows",
  	  	        "properties": {}
  	  	    },
  	  	    {
  	  	        "label": "created",
  	  	        "properties": {}
  	  	    }
  	  	],
  	  	"vertex_steps": [
  	  	    {
  	  	        "label": "person",
  	  	        "properties": {
  	  	            "age": "P.gt(28)"
  	  	        }
  	  	    },
  	  	    {
  	  	        "label": "software",
  	  	        "properties": {}
  	  	    }
  	  	],
  	  	"max_degree": 10000,
  	  	"skip_degree": 100000
  	},
  	"max_depth": 3,
  	"limit": 10000,
  	"with_vertex": true,
  	"with_path": true,
  	"with_edge": true
}
Response Status
200
Response Body
{
    "size": 4,
	"kneighbor": [
        "1:josh",
        "2:lop",
        "1:peter",
        "2:ripple"
    ],
    "paths": [
        {
            "objects": [
                "1:marko",
                "2:lop"
            ]
        },
        {
            "objects": [
                "1:marko",
                "2:lop",
                "1:peter"
            ]
        },
        {
            "objects": [
                "1:marko",
                "1:josh"
            ]
        },
        {
            "objects": [
                "1:marko",
                "1:josh",
                "2:ripple"
            ]
        }
    ],
    "vertices": [
        {
            "id": "2:ripple",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "ripple",
                "lang": "java",
                "price": 199
            }
        },
        {
            "id": "1:marko",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "marko",
                "age": 29,
                "city": "Beijing"
            }
        },
        {
            "id": "1:josh",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "josh",
                "age": 32,
                "city": "Beijing"
            }
        },
        {
            "id": "1:peter",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "peter",
                "age": 35,
                "city": "Shanghai"
            }
        },
        {
            "id": "2:lop",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "lop",
                "lang": "java",
                "price": 328
            }
        }
    ],
    "edges": [
        {
            "id": "S1:josh>2>>S2:ripple",
            "label": "created",
            "type": "edge",
            "outV": "1:josh",
            "outVLabel": "person",
            "inV": "2:ripple",
            "inVLabel": "software",
            "properties": {
                "weight": 1.0,
                "date": "20171210"
            }
        },
        {
            "id": "S1:marko>2>>S2:lop",
            "label": "created",
            "type": "edge",
            "outV": "1:marko",
            "outVLabel": "person",
            "inV": "2:lop",
            "inVLabel": "software",
            "properties": {
                "weight": 0.4,
                "date": "20171210"
            }
        },
        {
            "id": "S1:marko>1>20130220>S1:josh",
            "label": "knows",
            "type": "edge",
            "outV": "1:marko",
            "outVLabel": "person",
            "inV": "1:josh",
            "inVLabel": "person",
            "properties": {
                "weight": 1.0,
                "date": "20130220"
            }
        },
        {
            "id": "S1:peter>2>>S2:lop",
            "label": "created",
            "type": "edge",
            "outV": "1:peter",
            "outVLabel": "person",
            "inV": "2:lop",
            "inVLabel": "software",
            "properties": {
                "weight": 0.2,
                "date": "20170324"
            }
        }
    ]
}
3.2.4.3 适用场景

参见3.2.3.3

3.2.5 Same Neighbors

3.2.5.1 功能介绍

查询两个点的共同邻居

Params
  • vertex:一个顶点id,必填项
  • other:另一个顶点id,必填项
  • direction:顶点向外发散的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • label:边的类型,选填项,默认代表所有edge label
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • limit:返回的共同邻居的最大数目,选填项,默认为10000000
3.2.5.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/sameneighbors?vertex=“1:marko”&other="1:josh"
Response Status
200
Response Body
{
    "same_neighbors":[
        "2:lop"
    ]
}
3.2.5.3 适用场景

查找两个顶点的共同邻居:

  • 社交关系中发现两个用户的共同粉丝或者共同关注用户

3.2.6 Jaccard Similarity(GET)

3.2.6.1 功能介绍

计算两个顶点的jaccard similarity(两个顶点邻居的交集比上两个顶点邻居的并集)

Params
  • vertex:一个顶点id,必填项
  • other:另一个顶点id,必填项
  • direction:顶点向外发散的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • label:边的类型,选填项,默认代表所有edge label
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
3.2.6.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/jaccardsimilarity?vertex="1:marko"&other="1:josh"
Response Status
200
Response Body
{
    "jaccard_similarity": 0.2
}
3.2.6.3 适用场景

用于评估两个点的相似性或者紧密度

3.2.7 Jaccard Similarity(POST)

3.2.7.1 功能介绍

计算与指定顶点的jaccard similarity最大的N个点

jaccard similarity的计算方式为:两个顶点邻居的交集比上两个顶点邻居的并集

Params
  • vertex:一个顶点id,必填项
  • 从起始点出发的Step,必填项,结构如下:
    • direction:表示边的方向(OUT,IN,BOTH),默认是BOTH
    • labels:边的类型列表
    • properties:通过属性的值过滤边
    • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,默认为 10000 (注: 0.12版之前 step 内仅支持 degree 作为参数名, 0.12开始统一使用 max_degree, 并向下兼容 degree 写法)
    • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • top:返回一个起点的jaccard similarity中最大的top个,选填项,默认为100
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
3.2.7.2 使用方法
Method & Url
POST http://localhost:8080/graphs/{graph}/traversers/jaccardsimilarity
Request Body
{
  "vertex": "1:marko",
  "step": {
    "direction": "BOTH",
    "labels": [],
    "max_degree": 10000,
    "skip_degree": 100000
  },
  "top": 3
}
Response Status
200
Response Body
{
    "2:ripple": 0.3333333333333333,
    "1:peter": 0.3333333333333333,
    "1:josh": 0.2
}
3.2.7.3 适用场景

用于在图中找出与指定顶点相似性最高的顶点

3.2.8 Shortest Path

3.2.8.1 功能介绍

根据起始顶点、目的顶点、方向、边的类型(可选)和最大深度,查找一条最短路径

Params
  • source:起始顶点id,必填项
  • target:目的顶点id,必填项
  • direction:起始顶点向外发散的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • max_depth:最大步数,必填项
  • label:边的类型,选填项,默认代表所有edge label
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
3.2.8.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/shortestpath?source="1:marko"&target="2:ripple"&max_depth=3
Response Status
200
Response Body
{
    "path":[
        "1:marko",
        "1:josh",
        "2:ripple"
    ]
}
3.2.8.3 适用场景

查找两个顶点间的最短路径,例如:

  • 社交关系网中,查找两个用户有关系的最短路径,即最近的朋友关系链
  • 设备关联网络中,查找两个设备最短的关联关系

3.2.9 All Shortest Paths

3.2.9.1 功能介绍

根据起始顶点、目的顶点、方向、边的类型(可选)和最大深度,查找两点间所有的最短路径

Params
  • source:起始顶点id,必填项
  • target:目的顶点id,必填项
  • direction:起始顶点向外发散的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • max_depth:最大步数,必填项
  • label:边的类型,选填项,默认代表所有edge label
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
3.2.9.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/allshortestpaths?source="A"&target="Z"&max_depth=10
Response Status
200
Response Body
{
    "paths":[
        {
            "objects": [
                "A",
                "B",
                "C",
                "Z"
            ]
        },
        {
            "objects": [
                "A",
                "M",
                "N",
                "Z"
            ]
        }
    ]
}
3.2.9.3 适用场景

查找两个顶点间的所有最短路径,例如:

  • 社交关系网中,查找两个用户有关系的全部最短路径,即最近的朋友关系链
  • 设备关联网络中,查找两个设备全部的最短关联关系

3.2.10 Weighted Shortest Path

3.2.10.1 功能介绍

根据起始顶点、目的顶点、方向、边的类型(可选)和最大深度,查找一条带权最短路径

Params
  • source:起始顶点id,必填项
  • target:目的顶点id,必填项
  • direction:起始顶点向外发散的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • label:边的类型,选填项,默认代表所有edge label
  • weight:边的权重属性,必填项,必须是数字类型的属性
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • with_vertex:true表示返回结果包含完整的顶点信息(路径中的全部顶点),false时表示只返回顶点id,选填项,默认为false
3.2.10.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/weightedshortestpath?source="1:marko"&target="2:ripple"&weight="weight"&with_vertex=true
Response Status
200
Response Body
{
    "path": {
        "weight": 2.0,
        "vertices": [
            "1:marko",
            "1:josh",
            "2:ripple"
        ]
    },
    "vertices": [
        {
            "id": "1:marko",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "marko",
                "age": 29,
                "city": "Beijing"
            }
        },
        {
            "id": "1:josh",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "josh",
                "age": 32,
                "city": "Beijing"
            }
        },
        {
            "id": "2:ripple",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "ripple",
                "lang": "java",
                "price": 199
            }
        }
    ]
}
3.2.10.3 适用场景

查找两个顶点间的带权最短路径,例如:

  • 交通线路中查找从A城市到B城市花钱最少的交通方式

3.2.11 Single Source Shortest Path

3.2.11.1 功能介绍

从一个顶点出发,查找该点到图中其他顶点的最短路径(可选是否带权重)

Params
  • source:起始顶点id,必填项
  • direction:起始顶点向外发散的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • label:边的类型,选填项,默认代表所有edge label
  • weight:边的权重属性,选填项,必须是数字类型的属性,如果不填或者虽然填了但是边没有该属性,则权重为1.0
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • limit:查询到的目标顶点个数,也是返回的最短路径的条数,选填项,默认为10
  • with_vertex:true表示返回结果包含完整的顶点信息(路径中的全部顶点),false时表示只返回顶点id,选填项,默认为false
3.2.11.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/singlesourceshortestpath?source="1:marko"&with_vertex=true
Response Status
200
Response Body
{
    "paths": {
        "2:ripple": {
            "weight": 2.0,
            "vertices": [
                "1:marko",
                "1:josh",
                "2:ripple"
            ]
        },
        "1:josh": {
            "weight": 1.0,
            "vertices": [
                "1:marko",
                "1:josh"
            ]
        },
        "1:vadas": {
            "weight": 1.0,
            "vertices": [
                "1:marko",
                "1:vadas"
            ]
        },
        "1:peter": {
            "weight": 2.0,
            "vertices": [
                "1:marko",
                "2:lop",
                "1:peter"
            ]
        },
        "2:lop": {
            "weight": 1.0,
            "vertices": [
                "1:marko",
                "2:lop"
            ]
        }
    },
    "vertices": [
        {
            "id": "2:ripple",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "ripple",
                "lang": "java",
                "price": 199
            }
        },
        {
            "id": "1:marko",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "marko",
                "age": 29,
                "city": "Beijing"
            }
        },
        {
            "id": "1:josh",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "josh",
                "age": 32,
                "city": "Beijing"
            }
        },
        {
            "id": "1:vadas",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "vadas",
                "age": 27,
                "city": "Hongkong"
            }
        },
        {
            "id": "1:peter",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "peter",
                "age": 35,
                "city": "Shanghai"
            }
        },
        {
            "id": "2:lop",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "lop",
                "lang": "java",
                "price": 328
            }
        }
    ]
}
3.2.11.3 适用场景

查找从一个点出发到其他顶点的带权最短路径,比如:

  • 查找从北京出发到全国其他所有城市的耗时最短的乘车方案

3.2.12 Multi Node Shortest Path

3.2.12.1 功能介绍

查找指定顶点集两两之间的最短路径

Params
  • vertices:定义起始顶点,必填项,指定方式包括:
    • ids:通过顶点id列表提供起始顶点
    • label和properties:如果没有指定ids,则使用label和properties的联合条件查询起始顶点
      • label:顶点的类型
      • properties:通过属性的值查询起始顶点

      注意:properties中的属性值可以是列表,表示只要key对应的value在列表中就可以

  • step:表示从起始顶点到终止顶点走过的路径,必填项,Step的结构如下:
    • direction:表示边的方向(OUT,IN,BOTH),默认是BOTH
    • labels:边的类型列表
    • properties:通过属性的值过滤边
    • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,默认为 10000 (注: 0.12版之前 step 内仅支持 degree 作为参数名, 0.12开始统一使用 max_degree, 并向下兼容 degree 写法)
    • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • max_depth:步数,必填项
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • with_vertex:true表示返回结果包含完整的顶点信息(路径中的全部顶点),false时表示只返回顶点id,选填项,默认为false
3.2.12.2 使用方法
Method & Url
POST http://localhost:8080/graphs/{graph}/traversers/multinodeshortestpath
Request Body
{
    "vertices": {
        "ids": ["382:marko", "382:josh", "382:vadas", "382:peter", "383:lop", "383:ripple"]
    },
    "step": {
        "direction": "BOTH",
        "properties": {
        }
    },
    "max_depth": 10,
    "capacity": 100000000,
    "with_vertex": true
}
Response Status
200
Response Body
{
    "paths": [
        {
            "objects": [
                "382:peter",
                "383:lop"
            ]
        },
        {
            "objects": [
                "382:peter",
                "383:lop",
                "382:marko"
            ]
        },
        {
            "objects": [
                "382:peter",
                "383:lop",
                "382:josh"
            ]
        },
        {
            "objects": [
                "382:peter",
                "383:lop",
                "382:marko",
                "382:vadas"
            ]
        },
        {
            "objects": [
                "383:lop",
                "382:marko"
            ]
        },
        {
            "objects": [
                "383:lop",
                "382:josh"
            ]
        },
        {
            "objects": [
                "383:lop",
                "382:marko",
                "382:vadas"
            ]
        },
        {
            "objects": [
                "382:peter",
                "383:lop",
                "382:josh",
                "383:ripple"
            ]
        },
        {
            "objects": [
                "382:marko",
                "382:josh"
            ]
        },
        {
            "objects": [
                "383:lop",
                "382:josh",
                "383:ripple"
            ]
        },
        {
            "objects": [
                "382:marko",
                "382:vadas"
            ]
        },
        {
            "objects": [
                "382:marko",
                "382:josh",
                "383:ripple"
            ]
        },
        {
            "objects": [
                "382:josh",
                "383:ripple"
            ]
        },
        {
            "objects": [
                "382:josh",
                "382:marko",
                "382:vadas"
            ]
        },
        {
            "objects": [
                "382:vadas",
                "382:marko",
                "382:josh",
                "383:ripple"
            ]
        }
    ],
    "vertices": [
        {
            "id": "382:peter",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "peter",
                "age": 29,
                "city": "Shanghai"
            }
        },
        {
            "id": "383:lop",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "lop",
                "lang": "java",
                "price": 328
            }
        },
        {
            "id": "382:marko",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "marko",
                "age": 29,
                "city": "Beijing"
            }
        },
        {
            "id": "382:josh",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "josh",
                "age": 32,
                "city": "Beijing"
            }
        },
        {
            "id": "382:vadas",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "vadas",
                "age": 27,
                "city": "Hongkong"
            }
        },
        {
            "id": "383:ripple",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "ripple",
                "lang": "java",
                "price": 199
            }
        }
    ]
}
3.2.12.3 适用场景

查找多个点之间的最短路径,比如:

  • 查找多个公司和法人之间的最短路径

3.2.13 Paths (GET,基础版)

3.2.13.1 功能介绍

根据起始顶点、目的顶点、方向、边的类型(可选)和最大深度等条件查找所有路径

Params
  • source:起始顶点id,必填项
  • target:目的顶点id,必填项
  • direction:起始顶点向外发散的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • label:边的类型,选填项,默认代表所有edge label
  • max_depth:步数,必填项
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • limit:返回的路径的最大数目,选填项,默认为10
3.2.13.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/paths?source="1:marko"&target="1:josh"&max_depth=5
Response Status
200
Response Body
{
    "paths":[
        {
            "objects":[
                "1:marko",
                "1:josh"
            ]
        },
        {
            "objects":[
                "1:marko",
                "2:lop",
                "1:josh"
            ]
        }
    ]
}
3.2.13.3 适用场景

查找两个顶点间的所有路径,例如:

  • 社交网络中,查找两个用户所有可能的关系路径
  • 设备关联网络中,查找两个设备之间所有的关联路径

3.2.14 Paths (POST,高级版)

3.2.14.1 功能介绍

根据起始顶点、目的顶点、步骤(step)和最大深度等条件查找所有路径

Params
  • sources:定义起始顶点,必填项,指定方式包括:
    • ids:通过顶点id列表提供起始顶点
    • label和properties:如果没有指定ids,则使用label和properties的联合条件查询起始顶点
      • label:顶点的类型
      • properties:通过属性的值查询起始顶点

      注意:properties中的属性值可以是列表,表示只要key对应的value在列表中就可以

  • targets:定义终止顶点,必填项,指定方式包括:
    • ids:通过顶点id列表提供终止顶点
    • label和properties:如果没有指定ids,则使用label和properties的联合条件查询终止顶点
      • label:顶点的类型
      • properties:通过属性的值查询终止顶点

      注意:properties中的属性值可以是列表,表示只要key对应的value在列表中就可以

  • step:表示从起始顶点到终止顶点走过的路径,必填项,Step的结构如下:
    • direction:表示边的方向(OUT,IN,BOTH),默认是BOTH
    • labels:边的类型列表
    • properties:通过属性的值过滤边
    • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,默认为 10000 (注: 0.12版之前 step 内仅支持 degree 作为参数名, 0.12开始统一使用 max_degree, 并向下兼容 degree 写法)
    • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • max_depth:步数,必填项
  • nearest:nearest为true时,代表起始顶点到达结果顶点的最短路径长度为depth,不存在更短的路径;nearest为false时,代表起始顶点到结果顶点有一条长度为depth的路径(未必最短且可以有环),选填项,默认为true
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • limit:返回的路径的最大数目,选填项,默认为10
  • with_vertex:true表示返回结果包含完整的顶点信息(路径中的全部顶点),false时表示只返回顶点id,选填项,默认为false
3.2.14.2 使用方法
Method & Url
POST http://localhost:8080/graphs/{graph}/traversers/paths
Request Body
{
"sources": {
  "ids": ["1:marko"]
},
"targets": {
  "ids": ["1:peter"]
},
"step": {
"direction": "BOTH",
  "properties": {
    "weight": "P.gt(0.01)"
  }
},
"max_depth": 10,
"capacity": 100000000,
"limit": 10000000,
"with_vertex": false
}
Response Status
200
Response Body
{
    "paths": [
        {
            "objects": [
                "1:marko",
                "1:josh",
                "2:lop",
                "1:peter"
            ]
        },
        {
            "objects": [
                "1:marko",
                "2:lop",
                "1:peter"
            ]
        }
    ]
}
3.2.14.3 适用场景

查找两个顶点间的所有路径,例如:

  • 社交网络中,查找两个用户所有可能的关系路径
  • 设备关联网络中,查找两个设备之间所有的关联路径

3.2.15 Customized Paths

3.2.15.1 功能介绍

根据一批起始顶点、边规则(包括方向、边的类型和属性过滤)和最大深度等条件查找符合条件的所有的路径

Params
  • sources:定义起始顶点,必填项,指定方式包括:
    • ids:通过顶点id列表提供起始顶点
    • label和properties:如果没有指定ids,则使用label和properties的联合条件查询起始顶点
      • label:顶点的类型
      • properties:通过属性的值查询起始顶点

      注意:properties中的属性值可以是列表,表示只要key对应的value在列表中就可以

  • steps:表示从起始顶点走过的路径规则,是一组Step的列表。必填项。每个Step的结构如下:
    • direction:表示边的方向(OUT,IN,BOTH),默认是BOTH
    • labels:边的类型列表
    • properties:通过属性的值过滤边
    • weight_by:根据指定的属性计算边的权重,sort_by不为NONE时有效,与default_weight互斥
    • default_weight:当边没有属性作为权重计算值时,采取的默认权重,sort_by不为NONE时有效,与weight_by互斥
    • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,默认为 10000 (注: 0.12版之前 step 内仅支持 degree 作为参数名, 0.12开始统一使用 max_degree, 并向下兼容 degree 写法)
    • sample:当需要对某个step的符合条件的边进行采样时设置,-1表示不采样,默认为采样100
  • sort_by:根据路径的权重排序,选填项,默认为NONE:
    • NONE表示不排序,默认值
    • INCR表示按照路径权重的升序排序
    • DECR表示按照路径权重的降序排序
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • limit:返回的路径的最大数目,选填项,默认为10
  • with_vertex:true表示返回结果包含完整的顶点信息(路径中的全部顶点),false时表示只返回顶点id,选填项,默认为false
3.2.15.2 使用方法
Method & Url
POST http://localhost:8080/graphs/{graph}/traversers/customizedpaths
Request Body
{
    "sources":{
        "ids":[

        ],
        "label":"person",
        "properties":{
            "name":"marko"
        }
    },
    "steps":[
        {
            "direction":"OUT",
            "labels":[
                "knows"
            ],
            "weight_by":"weight",
            "max_degree":-1
        },
        {
            "direction":"OUT",
            "labels":[
                "created"
            ],
            "default_weight":8,
            "max_degree":-1,
            "sample":1
        }
    ],
    "sort_by":"INCR",
    "with_vertex":true,
    "capacity":-1,
    "limit":-1
}
Response Status
200
Response Body
{
    "paths":[
        {
            "objects":[
                "1:marko",
                "1:josh",
                "2:lop"
            ],
            "weights":[
                1,
                8
            ]
        }
    ],
    "vertices":[
        {
            "id":"1:marko",
            "label":"person",
            "type":"vertex",
            "properties":{
                "city":[
                    {
                        "id":"1:marko>city",
                        "value":"Beijing"
                    }
                ],
                "name":[
                    {
                        "id":"1:marko>name",
                        "value":"marko"
                    }
                ],
                "age":[
                    {
                        "id":"1:marko>age",
                        "value":29
                    }
                ]
            }
        },
        {
            "id":"1:josh",
            "label":"person",
            "type":"vertex",
            "properties":{
                "city":[
                    {
                        "id":"1:josh>city",
                        "value":"Beijing"
                    }
                ],
                "name":[
                    {
                        "id":"1:josh>name",
                        "value":"josh"
                    }
                ],
                "age":[
                    {
                        "id":"1:josh>age",
                        "value":32
                    }
                ]
            }
        },
        {
            "id":"2:lop",
            "label":"software",
            "type":"vertex",
            "properties":{
                "price":[
                    {
                        "id":"2:lop>price",
                        "value":328
                    }
                ],
                "name":[
                    {
                        "id":"2:lop>name",
                        "value":"lop"
                    }
                ],
                "lang":[
                    {
                        "id":"2:lop>lang",
                        "value":"java"
                    }
                ]
            }
        }
    ]
}
3.2.15.3 适用场景

适合查找各种复杂的路径集合,例如:

  • 社交网络中,查找看过张艺谋所导演的电影的用户关注的大V的路径(张艺谋—>电影—->用户—>大V)
  • 风控网络中,查找多个高风险用户的直系亲属的朋友的路径(高风险用户—>直系亲属—>朋友)

3.2.16 Template Paths

3.2.16.1 功能介绍

根据一批起始顶点、边规则(包括方向、边的类型和属性过滤)和最大深度等条件查找符合条件的所有的路径

Params
  • sources:定义起始顶点,必填项,指定方式包括:
    • ids:通过顶点id列表提供起始顶点
    • label和properties:如果没有指定ids,则使用label和properties的联合条件查询起始顶点
      • label:顶点的类型
      • properties:通过属性的值查询起始顶点

      注意:properties中的属性值可以是列表,表示只要key对应的value在列表中就可以

  • targets:定义终止顶点,必填项,指定方式包括:
    • ids:通过顶点id列表提供终止顶点
    • label和properties:如果没有指定ids,则使用label和properties的联合条件查询终止顶点
      • label:顶点的类型
      • properties:通过属性的值查询终止顶点

      注意:properties中的属性值可以是列表,表示只要key对应的value在列表中就可以

  • steps:表示从起始顶点走过的路径规则,是一组Step的列表。必填项。每个Step的结构如下:
    • direction:表示边的方向(OUT,IN,BOTH),默认是BOTH
    • labels:边的类型列表
    • properties:通过属性的值过滤边
    • max_times:当前step可以重复的次数,当为N时,表示从起始顶点可以经过当前step 1-N 次
    • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,默认为 10000 (注: 0.12版之前 step 内仅支持 degree 作为参数名, 0.12开始统一使用 max_degree, 并向下兼容 degree 写法)
    • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • with_ring:Boolean值,true表示包含环路;false表示不包含环路,默认为false
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • limit:返回的路径的最大数目,选填项,默认为10
  • with_vertex:true表示返回结果包含完整的顶点信息(路径中的全部顶点),false时表示只返回顶点id,选填项,默认为false
3.2.16.2 使用方法
Method & Url
POST http://localhost:8080/graphs/{graph}/traversers/templatepaths
Request Body
{
  "sources": {
    "ids": [],
    "label": "person",
    "properties": {
      "name": "vadas"
    }
  },
  "targets": {
    "ids": [],
    "label": "software",
    "properties": {
      "name": "ripple"
    }
  },
  "steps": [
    {
      "direction": "IN",
      "labels": ["knows"],
      "properties": {
      },
      "max_degree": 10000,
      "skip_degree": 100000
    },
    {
      "direction": "OUT",
      "labels": ["created"],
      "properties": {
      },
      "max_degree": 10000,
      "skip_degree": 100000
    },
    {
      "direction": "IN",
      "labels": ["created"],
      "properties": {
      },
      "max_degree": 10000,
      "skip_degree": 100000
    },
    {
      "direction": "OUT",
      "labels": ["created"],
      "properties": {
      },
      "max_degree": 10000,
      "skip_degree": 100000
    }
  ],
  "capacity": 10000,
  "limit": 10,
  "with_vertex": true
}
Response Status
200
Response Body
{
    "paths": [
        {
            "objects": [
                "1:vadas",
                "1:marko",
                "2:lop",
                "1:josh",
                "2:ripple"
            ]
        }
    ],
    "vertices": [
        {
            "id": "2:ripple",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "ripple",
                "lang": "java",
                "price": 199
            }
        },
        {
            "id": "1:marko",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "marko",
                "age": 29,
                "city": "Beijing"
            }
        },
        {
            "id": "1:josh",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "josh",
                "age": 32,
                "city": "Beijing"
            }
        },
        {
            "id": "1:vadas",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "vadas",
                "age": 27,
                "city": "Hongkong"
            }
        },
        {
            "id": "2:lop",
            "label": "software",
            "type": "vertex",
            "properties": {
                "name": "lop",
                "lang": "java",
                "price": 328
            }
        }
    ]
}
3.2.16.3 适用场景

适合查找各种复杂的模板路径,比如personA -(朋友)-> personB -(同学)-> personC,其中"朋友"和"同学"边可以分别是最多3层和4层的情况

3.2.17 Crosspoints

3.2.17.1 功能介绍

根据起始顶点、目的顶点、方向、边的类型(可选)和最大深度等条件查找相交点

Params
  • source:起始顶点id,必填项
  • target:目的顶点id,必填项
  • direction:起始顶点到目的顶点的方向, 目的点到起始点是反方向,BOTH时不考虑方向(OUT,IN,BOTH),选填项,默认是BOTH
  • label:边的类型,选填项,默认代表所有edge label
  • max_depth:步数,必填项
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • limit:返回的交点的最大数目,选填项,默认为10
3.2.17.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/crosspoints?source="2:lop"&target="2:ripple"&max_depth=5&direction=IN
Response Status
200
Response Body
{
    "crosspoints":[
        {
            "crosspoint":"1:josh",
            "objects":[
                "2:lop",
                "1:josh",
                "2:ripple"
            ]
        }
    ]
}
3.2.17.3 适用场景

查找两个顶点的交点及其路径,例如:

  • 社交网络中,查找两个用户共同关注的话题或者大V
  • 家族关系中,查找共同的祖先

3.2.18 Customized Crosspoints

3.2.18.1 功能介绍

根据一批起始顶点、多种边规则(包括方向、边的类型和属性过滤)和最大深度等条件查找符合条件的所有的路径终点的交集

Params
  • sources:定义起始顶点,必填项,指定方式包括:

    • ids:通过顶点id列表提供起始顶点
    • label和properties:如果没有指定ids,则使用label和properties的联合条件查询起始顶点
      • label:顶点的类型
      • properties:通过属性的值查询起始顶点

      注意:properties中的属性值可以是列表,表示只要key对应的value在列表中就可以

  • path_patterns:表示从起始顶点走过的路径规则,是一组规则的列表。必填项。每个规则是一个PathPattern

    • 每个PathPattern是一组Step列表,每个Step结构如下:
      • direction:表示边的方向(OUT,IN,BOTH),默认是BOTH
      • labels:边的类型列表
      • properties:通过属性的值过滤边
      • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,默认为 10000 (注: 0.12版之前 step 内仅支持 degree 作为参数名, 0.12开始统一使用 max_degree, 并向下兼容 degree 写法)
      • skip_degree:用于设置查询过程中舍弃超级顶点的最小边数,即当某个顶点的邻接边数目大于 skip_degree 时,完全舍弃该顶点。选填项,如果开启时,需满足 skip_degree >= max_degree 约束,默认为0 (不启用),表示不跳过任何点 (注意: 开启此配置后,遍历时会尝试访问一个顶点的 skip_degree 条边,而不仅仅是 max_degree 条边,这样有额外的遍历开销,对查询性能影响可能有较大影响,请确认理解后再开启)
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000

  • limit:返回的路径的最大数目,选填项,默认为10

  • with_path:true表示返回交点所在的路径,false表示不返回交点所在的路径,选填项,默认为false

  • with_vertex,选填项,默认为false:

    • true表示返回结果包含完整的顶点信息(路径中的全部顶点)
      • with_path为true时,返回所有路径中的顶点的完整信息
      • with_path为false时,返回所有交点的完整信息
    • false时表示只返回顶点id
3.2.18.2 使用方法
Method & Url
POST http://localhost:8080/graphs/{graph}/traversers/customizedcrosspoints
Request Body
{
    "sources":{
        "ids":[
            "2:lop",
            "2:ripple"
        ]
    },
    "path_patterns":[
        {
            "steps":[
                {
                    "direction":"IN",
                    "labels":[
                        "created"
                    ],
                    "max_degree":-1
                }
            ]
        }
    ],
    "with_path":true,
    "with_vertex":true,
    "capacity":-1,
    "limit":-1
}
Response Status
200
Response Body
{
    "crosspoints":[
        "1:josh"
    ],
    "paths":[
        {
            "objects":[
                "2:ripple",
                "1:josh"
            ]
        },
        {
            "objects":[
                "2:lop",
                "1:josh"
            ]
        }
    ],
    "vertices":[
        {
            "id":"2:ripple",
            "label":"software",
            "type":"vertex",
            "properties":{
                "price":[
                    {
                        "id":"2:ripple>price",
                        "value":199
                    }
                ],
                "name":[
                    {
                        "id":"2:ripple>name",
                        "value":"ripple"
                    }
                ],
                "lang":[
                    {
                        "id":"2:ripple>lang",
                        "value":"java"
                    }
                ]
            }
        },
        {
            "id":"1:josh",
            "label":"person",
            "type":"vertex",
            "properties":{
                "city":[
                    {
                        "id":"1:josh>city",
                        "value":"Beijing"
                    }
                ],
                "name":[
                    {
                        "id":"1:josh>name",
                        "value":"josh"
                    }
                ],
                "age":[
                    {
                        "id":"1:josh>age",
                        "value":32
                    }
                ]
            }
        },
        {
            "id":"2:lop",
            "label":"software",
            "type":"vertex",
            "properties":{
                "price":[
                    {
                        "id":"2:lop>price",
                        "value":328
                    }
                ],
                "name":[
                    {
                        "id":"2:lop>name",
                        "value":"lop"
                    }
                ],
                "lang":[
                    {
                        "id":"2:lop>lang",
                        "value":"java"
                    }
                ]
            }
        }
    ]
}
3.2.18.3 适用场景

查询一组顶点通过多种路径在终点有交集的情况。例如:

  • 在商品图谱中,多款手机、学习机、游戏机通过不同的低级别的类目路径,最终都属于一级类目的电子设备

3.2.19 Rings

3.2.19.1 功能介绍

根据起始顶点、方向、边的类型(可选)和最大深度等条件查找可达的环路

例如:1 -> 25 -> 775 -> 14690 -> 25, 其中环路为 25 -> 775 -> 14690 -> 25

Params
  • source:起始顶点id,必填项
  • direction:起始顶点发出的边的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • label:边的类型,选填项,默认代表所有edge label
  • max_depth:步数,必填项
  • source_in_ring:环路是否包含起点,选填项,默认为true
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • limit:返回的可达环路的最大数目,选填项,默认为10
3.2.19.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/rings?source="1:marko"&max_depth=2
Response Status
200
Response Body
{
    "rings":[
        {
            "objects":[
                "1:marko",
                "1:josh",
                "1:marko"
            ]
        },
        {
            "objects":[
                "1:marko",
                "1:vadas",
                "1:marko"
            ]
        },
        {
            "objects":[
                "1:marko",
                "2:lop",
                "1:marko"
            ]
        }
    ]
}
3.2.19.3 适用场景

查询起始顶点可达的环路,例如:

  • 风控项目中,查询一个用户可达的循环担保的人或者设备
  • 设备关联网络中,发现一个设备周围的循环引用的设备

3.2.20 Rays

3.2.20.1 功能介绍

根据起始顶点、方向、边的类型(可选)和最大深度等条件查找发散到边界顶点的路径

例如:1 -> 25 -> 775 -> 14690 -> 2289 -> 18379, 其中 18379 为边界顶点,即没有从 18379 发出的边

Params
  • source:起始顶点id,必填项
  • direction:起始顶点发出的边的方向(OUT,IN,BOTH),选填项,默认是BOTH
  • label:边的类型,选填项,默认代表所有edge label
  • max_depth:步数,必填项
  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000
  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000
  • limit:返回的非环路的最大数目,选填项,默认为10
3.2.20.2 使用方法
Method & Url
GET http://localhost:8080/graphs/{graph}/traversers/rays?source="1:marko"&max_depth=2&direction=OUT
Response Status
200
Response Body
{
    "rays":[
        {
            "objects":[
                "1:marko",
                "1:vadas"
            ]
        },
        {
            "objects":[
                "1:marko",
                "2:lop"
            ]
        },
        {
            "objects":[
                "1:marko",
                "1:josh",
                "2:ripple"
            ]
        },
        {
            "objects":[
                "1:marko",
                "1:josh",
                "2:lop"
            ]
        }
    ]
}
3.2.20.3 适用场景

查找起始顶点到某种关系的边界顶点的路径,例如:

  • 家族关系中,查找一个人到所有还没有孩子的子孙的路径
  • 设备关联网络中,找到某个设备到终端设备的路径

3.2.21 Fusiform Similarity

3.2.21.1 功能介绍

按照条件查询一批顶点对应的"梭形相似点"。当两个顶点跟很多共同的顶点之间有某种关系的时候,我们认为这两个点为"梭形相似点"。举个例子说明"梭形相似点":“读者A"读了100本书,可以定义读过这100本书中的80本以上的读者,是"读者A"的"梭形相似点”

Params
  • sources:定义起始顶点,必填项,指定方式包括:

    • ids:通过顶点id列表提供起始顶点
    • label和properties:如果没有指定ids,则使用label和properties的联合条件查询起始顶点
      • label:顶点的类型
      • properties:通过属性的值查询起始顶点

      注意:properties中的属性值可以是列表,表示只要key对应的value在列表中就可以

  • label:边的类型,选填项,默认代表所有edge label

  • direction:起始顶点向外发散的方向(OUT,IN,BOTH),选填项,默认是BOTH

  • min_neighbors:最少邻居数目,邻居数目少于这个阈值时,认为起点不具备"梭形相似点"。比如想要找一个"读者A"读过的书的"梭形相似点",那么min_neighbors为100时,表示"读者A"至少要读过100本书才可以有"梭形相似点",必填项

  • alpha:相似度,代表:起点与"梭形相似点"的共同邻居数目占起点的全部邻居数目的比例,必填项

  • min_similars:“梭形相似点"的最少个数,只有当起点的"梭形相似点"数目大于或等于该值时,才会返回起点及其"梭形相似点”,选填项,默认值为1

  • top:返回一个起点的"梭形相似点"中相似度最高的top个,必填项,0表示全部

  • group_property:与min_groups一起使用,当起点跟其所有的"梭形相似点"某个属性的值有至少min_groups个不同值时,才会返回该起点及其"梭形相似点"。比如为"读者A"推荐"异地"书友时,需要设置group_property为读者的"城市"属性,min_group至少为2,选填项,不填代表不需要根据属性过滤

  • min_groups:与group_property一起使用,只有group_property设置时才有意义

  • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,选填项,默认为10000

  • capacity:遍历过程中最大的访问的顶点数目,选填项,默认为10000000

  • limit:返回的结果数目上限(一个起点及其"梭形相似点"算一个结果),选填项,默认为10

  • with_intermediary:是否返回起点及其"梭形相似点"共同关联的中间点,默认为false

  • with_vertex,选填项,默认为false:

    • true表示返回结果包含完整的顶点信息
    • false时表示只返回顶点id
3.2.21.2 使用方法
Method & Url
POST http://localhost:8080/graphs/hugegraph/traversers/fusiformsimilarity
Request Body
{
    "sources":{
        "ids":[],
        "label": "person",
        "properties": {
            "name":"p1"
        }
    },
    "label":"read",
    "direction":"OUT",
    "min_neighbors":8,
    "alpha":0.75,
    "min_similars":1,
    "top":0,
    "group_property":"city",
    "min_group":2,
    "max_degree": 10000,
    "capacity": -1,
    "limit": -1,
    "with_intermediary": false,
    "with_vertex":true
}
Response Status
200
Response Body
{
    "similars": {
        "3:p1": [
            {
                "id": "3:p2",
                "score": 0.8888888888888888,
                "intermediaries": [
                ]
            },
            {
                "id": "3:p3",
                "score": 0.7777777777777778,
                "intermediaries": [
                ]
            }
        ]
    },
    "vertices": [
        {
            "id": "3:p1",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "p1",
                "city": "Beijing"
            }
        },
        {
            "id": "3:p2",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "p2",
                "city": "Shanghai"
            }
        },
        {
            "id": "3:p3",
            "label": "person",
            "type": "vertex",
            "properties": {
                "name": "p3",
                "city": "Beijing"
            }
        }
    ]
}
3.2.21.3 适用场景

查询一组顶点相似度很高的顶点。例如:

  • 跟一个读者有类似书单的读者
  • 跟一个玩家玩类似游戏的玩家

3.2.22 Vertices

3.2.22.1 根据顶点的id列表,批量查询顶点
Params
  • ids:要查询的顶点id列表
Method & Url
GET http://localhost:8080/graphs/hugegraph/traversers/vertices?ids="1:marko"&ids="2:lop"
Response Status
200
Response Body
{
    "vertices":[
        {
            "id":"1:marko",
            "label":"person",
            "type":"vertex",
            "properties":{
                "city":[
                    {
                        "id":"1:marko>city",
                        "value":"Beijing"
                    }
                ],
                "name":[
                    {
                        "id":"1:marko>name",
                        "value":"marko"
                    }
                ],
                "age":[
                    {
                        "id":"1:marko>age",
                        "value":29
                    }
                ]
            }
        },
        {
            "id":"2:lop",
            "label":"software",
            "type":"vertex",
            "properties":{
                "price":[
                    {
                        "id":"2:lop>price",
                        "value":328
                    }
                ],
                "name":[
                    {
                        "id":"2:lop>name",
                        "value":"lop"
                    }
                ],
                "lang":[
                    {
                        "id":"2:lop>lang",
                        "value":"java"
                    }
                ]
            }
        }
    ]
}
3.2.22.2 获取顶点 Shard 信息

通过指定的分片大小split_size,获取顶点分片信息(可以与 3.2.21.3 中的 Scan 配合使用来获取顶点)。

Params
  • split_size:分片大小,必填项
Method & Url
GET http://localhost:8080/graphs/hugegraph/traversers/vertices/shards?split_size=67108864
Response Status
200
Response Body
{
    "shards":[
        {
            "start": "0",
            "end": "2165893",
            "length": 0
        },
        {
            "start": "2165893",
            "end": "4331786",
            "length": 0
        },
        {
            "start": "4331786",
            "end": "6497679",
            "length": 0
        },
        {
            "start": "6497679",
            "end": "8663572",
            "length": 0
        },
        ......
    ]
}
3.2.22.3 根据Shard信息批量获取顶点

通过指定的分片信息批量查询顶点(Shard信息的获取参见 3.2.21.2 Shard)。

Params
  • start:分片起始位置,必填项
  • end:分片结束位置,必填项
  • page:分页位置,选填项,默认为null,不分页;当page为“”时表示分页的第一页,从start指示的位置开始
  • page_limit:分页获取顶点时,一页中顶点数目的上限,选填项,默认为100000
Method & Url
GET http://localhost:8080/graphs/hugegraph/traversers/vertices/scan?start=0&end=4294967295
Response Status
200
Response Body
{
    "vertices":[
        {
            "id":"2:ripple",
            "label":"software",
            "type":"vertex",
            "properties":{
                "price":[
                    {
                        "id":"2:ripple>price",
                        "value":199
                    }
                ],
                "name":[
                    {
                        "id":"2:ripple>name",
                        "value":"ripple"
                    }
                ],
                "lang":[
                    {
                        "id":"2:ripple>lang",
                        "value":"java"
                    }
                ]
            }
        },
        {
            "id":"1:vadas",
            "label":"person",
            "type":"vertex",
            "properties":{
                "city":[
                    {
                        "id":"1:vadas>city",
                        "value":"Hongkong"
                    }
                ],
                "name":[
                    {
                        "id":"1:vadas>name",
                        "value":"vadas"
                    }
                ],
                "age":[
                    {
                        "id":"1:vadas>age",
                        "value":27
                    }
                ]
            }
        },
        {
            "id":"1:peter",
            "label":"person",
            "type":"vertex",
            "properties":{
                "city":[
                    {
                        "id":"1:peter>city",
                        "value":"Shanghai"
                    }
                ],
                "name":[
                    {
                        "id":"1:peter>name",
                        "value":"peter"
                    }
                ],
                "age":[
                    {
                        "id":"1:peter>age",
                        "value":35
                    }
                ]
            }
        },
        {
            "id":"1:josh",
            "label":"person",
            "type":"vertex",
            "properties":{
                "city":[
                    {
                        "id":"1:josh>city",
                        "value":"Beijing"
                    }
                ],
                "name":[
                    {
                        "id":"1:josh>name",
                        "value":"josh"
                    }
                ],
                "age":[
                    {
                        "id":"1:josh>age",
                        "value":32
                    }
                ]
            }
        },
        {
            "id":"1:marko",
            "label":"person",
            "type":"vertex",
            "properties":{
                "city":[
                    {
                        "id":"1:marko>city",
                        "value":"Beijing"
                    }
                ],
                "name":[
                    {
                        "id":"1:marko>name",
                        "value":"marko"
                    }
                ],
                "age":[
                    {
                        "id":"1:marko>age",
                        "value":29
                    }
                ]
            }
        },
        {
            "id":"2:lop",
            "label":"software",
            "type":"vertex",
            "properties":{
                "price":[
                    {
                        "id":"2:lop>price",
                        "value":328
                    }
                ],
                "name":[
                    {
                        "id":"2:lop>name",
                        "value":"lop"
                    }
                ],
                "lang":[
                    {
                        "id":"2:lop>lang",
                        "value":"java"
                    }
                ]
            }
        }
    ]
}
3.2.22.4 适用场景
  • 按id列表查询顶点,可用于批量查询顶点,比如在path查询到多条路径之后,可以进一步查询某条路径的所有顶点属性。
  • 获取分片和按分片查询顶点,可以用来遍历全部顶点

3.2.23 Edges

3.2.23.1 根据边的id列表,批量查询边
Params
  • ids:要查询的边id列表
Method & Url
GET http://localhost:8080/graphs/hugegraph/traversers/edges?ids="S1:josh>1>>S2:lop"&ids="S1:josh>1>>S2:ripple"
Response Status
200
Response Body
{
    "edges": [
        {
            "id": "S1:josh>1>>S2:lop",
            "label": "created",
            "type": "edge",
            "inVLabel": "software",
            "outVLabel": "person",
            "inV": "2:lop",
            "outV": "1:josh",
            "properties": {
                "date": "20091111",
                "weight": 0.4
            }
        },
        {
            "id": "S1:josh>1>>S2:ripple",
            "label": "created",
            "type": "edge",
            "inVLabel": "software",
            "outVLabel": "person",
            "inV": "2:ripple",
            "outV": "1:josh",
            "properties": {
                "date": "20171210",
                "weight": 1
            }
        }
    ]
}
3.2.23.2 获取边 Shard 信息

通过指定的分片大小split_size,获取边分片信息(可以与 3.2.22.3 中的 Scan 配合使用来获取边)。

Params
  • split_size:分片大小,必填项
Method & Url
GET http://localhost:8080/graphs/hugegraph/traversers/edges/shards?split_size=4294967295
Response Status
200
Response Body
{
    "shards":[
        {
            "start": "0",
            "end": "1073741823",
            "length": 0
        },
        {
            "start": "1073741823",
            "end": "2147483646",
            "length": 0
        },
        {
            "start": "2147483646",
            "end": "3221225469",
            "length": 0
        },
        {
            "start": "3221225469",
            "end": "4294967292",
            "length": 0
        },
        {
            "start": "4294967292",
            "end": "4294967295",
            "length": 0
        }
    ]
}
3.2.23.3 根据 Shard 信息批量获取边

通过指定的分片信息批量查询边(Shard信息的获取参见 3.2.22.2)。

Params
  • start:分片起始位置,必填项
  • end:分片结束位置,必填项
  • page:分页位置,选填项,默认为null,不分页;当page为“”时表示分页的第一页,从start指示的位置开始
  • page_limit:分页获取边时,一页中边数目的上限,选填项,默认为100000
Method & Url
GET http://localhost:8080/graphs/hugegraph/traversers/edges/scan?start=0&end=3221225469
Response Status
200
Response Body
{
    "edges":[
        {
            "id":"S1:peter>2>>S2:lop",
            "label":"created",
            "type":"edge",
            "inVLabel":"software",
            "outVLabel":"person",
            "inV":"2:lop",
            "outV":"1:peter",
            "properties":{
                "weight":0.2,
                "date":"20170324"
            }
        },
        {
            "id":"S1:josh>2>>S2:lop",
            "label":"created",
            "type":"edge",
            "inVLabel":"software",
            "outVLabel":"person",
            "inV":"2:lop",
            "outV":"1:josh",
            "properties":{
                "weight":0.4,
                "date":"20091111"
            }
        },
        {
            "id":"S1:josh>2>>S2:ripple",
            "label":"created",
            "type":"edge",
            "inVLabel":"software",
            "outVLabel":"person",
            "inV":"2:ripple",
            "outV":"1:josh",
            "properties":{
                "weight":1,
                "date":"20171210"
            }
        },
        {
            "id":"S1:marko>1>20130220>S1:josh",
            "label":"knows",
            "type":"edge",
            "inVLabel":"person",
            "outVLabel":"person",
            "inV":"1:josh",
            "outV":"1:marko",
            "properties":{
                "weight":1,
                "date":"20130220"
            }
        },
        {
            "id":"S1:marko>1>20160110>S1:vadas",
            "label":"knows",
            "type":"edge",
            "inVLabel":"person",
            "outVLabel":"person",
            "inV":"1:vadas",
            "outV":"1:marko",
            "properties":{
                "weight":0.5,
                "date":"20160110"
            }
        },
        {
            "id":"S1:marko>2>>S2:lop",
            "label":"created",
            "type":"edge",
            "inVLabel":"software",
            "outVLabel":"person",
            "inV":"2:lop",
            "outV":"1:marko",
            "properties":{
                "weight":0.4,
                "date":"20171210"
            }
        }
    ]
}
3.2.23.4 适用场景
  • 按id列表查询边,可用于批量查询边
  • 获取分片和按分片查询边,可以用来遍历全部边

1.10 - Rank API

4.1 rank API 概述

HugeGraphServer 除了上一节提到的遍历(traverser)方法,还提供了一类专门做推荐的方法,我们称为rank API, 可在图中为一个点推荐与其关系密切的其它点。

4.2 rank API 详解

4.2.1 Personal Rank API

Personal Rank 算法典型场景是用于推荐应用中, 根据某个点现有的出边, 推荐具有相近 / 相同关系的其他点, 比如根据某个人的阅读记录 / 习惯, 向它推荐其他可能感兴趣的书, 或潜在的书友, 举例如下:

  1. 假设给定 1个 Person 点 是 tom, 它喜欢 a,b,c,d,e 5本书, 我们的想给 tom 推荐一些书友, 以及一些书, 最容易的想法就是看看还有哪些人喜欢过这些书 (共同兴趣)
  2. 那么此时, 需要有其它的 Person 点比如 neo, 他喜欢 b,d,f 3本书, 以及 jay, 它喜欢 c,d,e,g 4本书, lee 它喜欢 a,d,e,f 4本书
  3. 由于 tom 已经看过的书不需要重复推荐, 所以返回结果里应该期望推荐有共同喜好的其他书友看过, 但 tom 没看过的书, 比如推荐 “f” 和 “g” 书, 且优先级 f > g
  4. 此时再计算 tom 的个性化 rank 值, 就会返回排序后 TopN 推荐的 书友 + 书 的结果了 (如果只需要推荐的书, 选择 OTHER_LABEL 即可)
4.2.1.0 数据准备

上面是一个简单的例子, 这里再提供一个公开的 1MB 测试数据集 MovieLens 为例, 用户需下载该数据集,然后使用 HugeGraph-Loader 导入到 HugeGraph 中,简单起见,数据中顶点 user 和 movie 的属性都忽略,仅使用 id 字段即可,边 rating 的具体评分值也忽略。loader 使用的元数据 文件和输入源映射文件内容如下:

////////////////////////////////////////////////////////////
// UserID::Gender::Age::Occupation::Zip-code
// MovieID::Title::Genres
// UserID::MovieID::Rating::Timestamp
////////////////////////////////////////////////////////////

// Define schema
schema.propertyKey("id").asInt().ifNotExist().create();
schema.propertyKey("rate").asInt().ifNotExist().create();

schema.vertexLabel("user")
      .properties("id")
      .primaryKeys("id")
      .ifNotExist()
      .create();
schema.vertexLabel("movie")
      .properties("id")
      .primaryKeys("id")
      .ifNotExist()
      .create();

schema.edgeLabel("rating")
      .sourceLabel("user")
      .targetLabel("movie")
      .properties("rate")
      .ifNotExist()
      .create();
{
  "vertices": [
    {
      "label": "user",
      "input": {
        "type": "file",
        "path": "users.dat",
        "format": "TEXT",
        "delimiter": "::",
        "header": ["UserID", "Gender", "Age", "Occupation", "Zip-code"]
      },
      "ignored": ["Gender", "Age", "Occupation", "Zip-code"],
      "mapping": {
          "UserID": "id"
      }
    },
    {
      "label": "movie",
      "input": {
        "type": "file",
        "path": "movies.dat",
        "format": "TEXT",
        "delimiter": "::",
        "header": ["MovieID", "Title", "Genres"]
      },
      "ignored": ["Title", "Genres"],
      "mapping": {
          "MovieID": "id"
      }
    }
  ],
  "edges": [
    {
      "label": "rating",
      "source": ["UserID"],
      "target": ["MovieID"],
      "input": {
        "type": "file",
        "path": "ratings.dat",
        "format": "TEXT",
        "delimiter": "::",
        "header": ["UserID", "MovieID", "Rating", "Timestamp"]
      },
      "ignored": ["Timestamp"],
      "mapping": {
          "UserID": "id",
          "MovieID": "id",
          "Rating": "rate"
      }
    }
  ]
}

注意将映射文件中input.path的值修改为自己本地的路径。

4.2.1.1 功能介绍

适用于二分图,给出所有源顶点相关的其他顶点及其相关性组成的列表。

二分图:也称二部图,是图论里的一种特殊模型,也是一种特殊的网络流。其最大的特点在于,可以将图里的顶点分为两个集合,两个集合之间的点有边相连,但集合内的点之间没有直接关联。

假设有一个用户和物品的二分图,基于随机游走的 PersonalRank 算法步骤如下:

  1. 选定一个起点用户 u,其初始权重为 1.0,从 Vu 开始游走(有 alpha 的概率走到邻居点,1 - alpha 的概率停留);
  2. 如果决定向外游走, 那么会选取某一个类型的出边, 例如 rating 来查找共同的打分人:
    1. 那就从当前节点的邻居节点中按照均匀分布随机选择一个,并且按照均匀分布划分权重值;
    2. 给源顶点补偿权重 1 - alpha;
    3. 重复步骤2;
  3. 达到一定步数或达到精度后收敛,得到推荐列表。
Params

必填项:

  • source: 源顶点 id
  • label: 源点出发的某类边 label,须连接两类不同顶点

选填项:

  • alpha:每轮迭代时从某个点往外走的概率,与 PageRank 算法中的 alpha 类似,取值区间为 (0, 1], 默认值 0.85
  • max_degree: 查询过程中,单个顶点遍历的最大邻接边数目,默认为 10000
  • max_depth: 迭代次数,取值区间为 [2, 50], 默认值 5
  • with_label:筛选结果中保留哪些结果,可选以下三类, 默认为 BOTH_LABEL
    • SAME_LABEL:仅保留与源顶点相同类别的顶点
    • OTHER_LABEL:仅保留与源顶点不同类别(二分图的另一端)的顶点
    • BOTH_LABEL:同时保留与源顶点相同和相反类别的顶点
  • limit: 返回的顶点的最大数目,默认为 100
  • max_diff: 提前收敛的精度差, 默认为 0.0001 (后续实现)
  • sorted:返回的结果是否根据 rank 排序,为 true 时降序排列,反之不排序,默认为 true
4.2.1.2 使用方法
Method & Url
POST http://localhost:8080/graphs/hugegraph/traversers/personalrank
Request Body
{
    "source": "1:1",
    "label": "rating",
    "alpha": 0.6,
    "max_depth": 15,
    "with_label": "OTHER_LABEL",
    "sorted": true,
    "limit": 10
}
Response Status
200
Response Body
{
    "2:2858": 0.0005014026017816927,
    "2:1196": 0.0004336708357653617,
    "2:1210": 0.0004128083140214213,
    "2:593": 0.00038117341069881513,
    "2:480": 0.00037005373269728036,
    "2:1198": 0.000366641614652057,
    "2:2396": 0.0003622362410538888,
    "2:2571": 0.0003593312457300953,
    "2:589": 0.00035922123055598566,
    "2:110": 0.0003466135844390885
}
4.2.1.3 适用场景

两类不同顶点连接形成的二分图中,给某个点推荐相关性最高的其他顶点,例如:

  • 阅读推荐: 找出优先给某人推荐的其他书籍, 也可以同时推荐共同喜好最高的书友 (例: 微信 “你的好友也在看 xx 文章” 功能)
  • 社交推荐: 找出拥有相同关注话题的其他博主, 也可以推荐可能感兴趣的新闻/消息 (例: Weibo 中的 “热点推荐” 功能)
  • 商品推荐: 通过某人现在的购物习惯, 找出应优先推给它的商品列表, 也可以给它推荐带货播主 (例: TaoBao 的 “猜你喜欢” 功能)

4.2.2 Neighbor Rank API

4.2.2.0 数据准备
public class Loader {
    public static void main(String[] args) {
        HugeClient client = new HugeClient("http://127.0.0.1:8080", "hugegraph");
        SchemaManager schema = client.schema();

        schema.propertyKey("name").asText().ifNotExist().create();

        schema.vertexLabel("person")
              .properties("name")
              .useCustomizeStringId()
              .ifNotExist()
              .create();

        schema.vertexLabel("movie")
              .properties("name")
              .useCustomizeStringId()
              .ifNotExist()
              .create();

        schema.edgeLabel("follow")
              .sourceLabel("person")
              .targetLabel("person")
              .ifNotExist()
              .create();

        schema.edgeLabel("like")
              .sourceLabel("person")
              .targetLabel("movie")
              .ifNotExist()
              .create();

        schema.edgeLabel("directedBy")
              .sourceLabel("movie")
              .targetLabel("person")
              .ifNotExist()
              .create();

        GraphManager graph = client.graph();

        Vertex O = graph.addVertex(T.label, "person", T.id, "O", "name", "O");

        Vertex A = graph.addVertex(T.label, "person", T.id, "A", "name", "A");
        Vertex B = graph.addVertex(T.label, "person", T.id, "B", "name", "B");
        Vertex C = graph.addVertex(T.label, "person", T.id, "C", "name", "C");
        Vertex D = graph.addVertex(T.label, "person", T.id, "D", "name", "D");

        Vertex E = graph.addVertex(T.label, "movie", T.id, "E", "name", "E");
        Vertex F = graph.addVertex(T.label, "movie", T.id, "F", "name", "F");
        Vertex G = graph.addVertex(T.label, "movie", T.id, "G", "name", "G");
        Vertex H = graph.addVertex(T.label, "movie", T.id, "H", "name", "H");
        Vertex I = graph.addVertex(T.label, "movie", T.id, "I", "name", "I");
        Vertex J = graph.addVertex(T.label, "movie", T.id, "J", "name", "J");

        Vertex K = graph.addVertex(T.label, "person", T.id, "K", "name", "K");
        Vertex L = graph.addVertex(T.label, "person", T.id, "L", "name", "L");
        Vertex M = graph.addVertex(T.label, "person", T.id, "M", "name", "M");

        O.addEdge("follow", A);
        O.addEdge("follow", B);
        O.addEdge("follow", C);
        D.addEdge("follow", O);

        A.addEdge("follow", B);
        A.addEdge("like", E);
        A.addEdge("like", F);

        B.addEdge("like", G);
        B.addEdge("like", H);

        C.addEdge("like", I);
        C.addEdge("like", J);

        E.addEdge("directedBy", K);
        F.addEdge("directedBy", B);
        F.addEdge("directedBy", L);

        G.addEdge("directedBy", M);
    }
}
4.2.2.1 功能介绍

在一般图结构中,找出每一层与给定起点相关性最高的前 N 个顶点及其相关度,用图的语义理解就是:从起点往外走, 走到各层各个顶点的概率。

Params
  • source: 源顶点 id,必填项
  • alpha:每轮迭代时从某个点往外走的概率,与 PageRank 算法中的 alpha 类似,必填项,取值区间为 (0, 1]
  • steps: 表示从起始顶点走过的路径规则,是一组 Step 的列表,每个 Step 对应结果中的一层,必填项。每个 Step 的结构如下:
    • direction:表示边的方向(OUT, IN, BOTH),默认是 BOTH
    • labels:边的类型列表,多个边类型取并集
    • max_degree:查询过程中,单个顶点遍历的最大邻接边数目,默认为 10000 (注: 0.12版之前 step 内仅支持 degree 作为参数名, 0.12开始统一使用 max_degree, 并向下兼容 degree 写法)
    • top:在结果中每一层只保留权重最高的前 N 个结果,默认为 100,最大值为 1000
  • capacity: 遍历过程中最大的访问的顶点数目,选填项,默认为10000000
4.2.2.2 使用方法
Method & Url
POST http://localhost:8080/graphs/hugegraph/traversers/neighborrank
Request Body
{
    "source":"O",
    "steps":[
        {
            "direction":"OUT",
            "labels":[
                "follow"
            ],
            "max_degree":-1,
            "top":100
        },
        {
            "direction":"OUT",
            "labels":[
                "follow",
                "like"
            ],
            "max_degree":-1,
            "top":100
        },
        {
            "direction":"OUT",
            "labels":[
                "directedBy"
            ],
            "max_degree":-1,
            "top":100
        }
    ],
    "alpha":0.9,
    "capacity":-1
}
Response Status
200
Response Body
{
    "ranks": [
        {
            "O": 1
        },
        {
            "B": 0.4305,
            "A": 0.3,
            "C": 0.3
        },
        {
            "G": 0.17550000000000002,
            "H": 0.17550000000000002,
            "I": 0.135,
            "J": 0.135,
            "E": 0.09000000000000001,
            "F": 0.09000000000000001
        },
        {
            "M": 0.15795,
            "K": 0.08100000000000002,
            "L": 0.04050000000000001
        }
    ]
}
4.2.2.3 适用场景

为给定的起点在不同的层中找到最应该推荐的顶点。

  • 比如:在观众、朋友、电影、导演的四层图结构中,根据某个观众的朋友们喜欢的电影,为这个观众推荐电影;或者根据这些电影是谁拍的,为其推荐导演。

1.11 - Variable API

5.1 Variables

Variables可以用来存储有关整个图的数据,数据按照键值对的方式存取

5.1.1 创建或者更新某个键值对

Method & Url
PUT http://localhost:8080/graphs/hugegraph/variables/name
Request Body
{
  "data": "tom"
}
Response Status
200
Response Body
{
    "name": "tom"
}

5.1.2 列出全部键值对

Method & Url
GET http://localhost:8080/graphs/hugegraph/variables
Response Status
200
Response Body
{
    "name": "tom"
}

5.1.3 列出某个键值对

Method & Url
GET http://localhost:8080/graphs/hugegraph/variables/name
Response Status
200
Response Body
{
    "name": "tom"
}

5.1.4 删除某个键值对

Method & Url
DELETE http://localhost:8080/graphs/hugegraph/variables/name
Response Status
204

1.12 - Graphs API

6.1 Graphs

6.1.1 列出数据库中全部的图

Method & Url
GET http://localhost:8080/graphs
Response Status
200
Response Body
{
    "graphs": [
        "hugegraph",
        "hugegraph1"
    ]
}

6.1.2 查看某个图的信息

Method & Url
GET http://localhost:8080/graphs/hugegraph
Response Status
200
Response Body
{
    "name": "hugegraph",
    "backend": "cassandra"
}

6.1.3 清空某个图的全部数据,包括 schema、vertex、edge 和 index 等,该操作需要管理员权限

Params

由于清空图是一个比较危险的操作,为避免用户误调用,我们给 API 添加了用于确认的参数:

  • confirm_message: 默认为I'm sure to delete all data
Method & Url
DELETE http://localhost:8080/graphs/hugegraph/clear?confirm_message=I%27m+sure+to+delete+all+data
Response Status
204

6.1.4 克隆一个图 (管理员权限)

Params
  • clone_graph_name: 已有图的名称;从已有的图来克隆,用户可选择传递配置文件,传递时将替换已有图中的配置;
Method & Url
POST http://localhost:8080/graphs/hugegraph_clone?clone_graph_name=hugegraph
Request Body (可选)

克隆 (fork) 一个无权限的新图 (body 类型必须设置为 Context-Type=text/plain)

gremlin.graph=org.apache.hugegraph.HugeFactory
backend=rocksdb
serializer=binary
store=hugegraph_clone
rocksdb.data_path=./rks-data-xx
rocksdb.wal_path=./rks-data-xx

Note:

  1. Rocksdb 存储路径不能与现有图相同(需使用不同的目录)
  2. 如需开启新图的权限系统,需替换设置 gremlin.graph=org.apache.hugegraph.auth.HugeFactoryAuthProxy
Response Status
200
Response Body
{
    "name": "hugegraph_clone",
    "backend": "rocksdb"
}

6.1.5 创建一个图,该操作需要管理员权限

Method & Url
POST http://localhost:8080/graphs/hugegraph-xx
Request Body

新建一个无权限的新图 (body 类型必须设置为 Context-Type=text/plain)

gremlin.graph=org.apache.hugegraph.HugeFactory
backend=rocksdb
serializer=binary
store=hugegraph2
rocksdb.data_path=./rks-data-xx
rocksdb.wal_path=./rks-data-xx

Note:

  1. Rocksdb 存储路径不能与现有图相同(需使用不同的目录)
  2. 如需开启新图的权限系统,需替换设置 gremlin.graph=org.apache.hugegraph.auth.HugeFactoryAuthProxy
Response Status
200
Response Body
{
    "name": "hugegraph2",
    "backend": "rocksdb"
}

6.1.6 删除某个图及其全部数据

Params

由于删除图是一个比较危险的操作,为避免用户误调用,我们给 API 添加了用于确认的参数:

  • confirm_message: 默认为I'm sure to drop the graph
Method & Url
DELETE http://localhost:8080/graphs/hugegraph_clone?confirm_message=I%27m%20sure%20to%20drop%20the%20graph
Response Status
204

6.2 Conf

6.2.1 查看某个图的配置,该操作需要管理员权限

Method & Url
GET http://localhost:8080/graphs/hugegraph/conf
Response Status
200
Response Body
# gremlin entrence to create graph
gremlin.graph=org.apache.hugegraph.HugeFactory
# cache config
#schema.cache_capacity=1048576
#graph.cache_capacity=10485760
#graph.cache_expire=600

# schema illegal name template
#schema.illegal_name_regex=\s+|~.*

#vertex.default_label=vertex

backend=cassandra
serializer=cassandra

store=hugegraph
...=

6.3 Mode

合法的图模式包括:NONE,RESTORING,MERGING,LOADING

  • None 模式(默认),元数据和图数据的写入属于正常状态。特别的:
    • 元数据(schema)创建时不允许指定 ID
    • 图数据(vertex)在 id strategy 为 Automatic 时,不允许指定 ID
  • LOADING:批量导入数据时自动启用,特别的:
    • 添加顶点/边时,不会检查必填属性是否传入

Restore 时存在两种不同的模式:Restoring 和 Merging

  • Restoring 模式,恢复到一个新图中,特别的:
    • 元数据(schema)创建时允许指定 ID
    • 图数据(vertex)在 id strategy 为 Automatic 时,允许指定 ID
  • Merging 模式,合并到一个已存在元数据和图数据的图中,特别的:
    • 元数据(schema)创建时不允许指定 ID
    • 图数据(vertex)在 id strategy 为 Automatic 时,允许指定 ID

正常情况下,图模式为 None,当需要 Restore 图时,需要根据需要临时修改图模式为 Restoring 模式或者 Merging 模式,并在完成 Restore 时,恢复图模式为 None。

6.3.1 查看某个图的模式。

Method & Url
GET http://localhost:8080/graphs/hugegraph/mode
Response Status
200
Response Body
{
    "mode": "NONE"
}

合法的图模式包括:NONE,RESTORING,MERGING

6.3.2 设置某个图的模式。该操作需要管理员权限

Method & Url
PUT http://localhost:8080/graphs/hugegraph/mode
Request Body
"RESTORING"

合法的图模式包括:NONE,RESTORING,MERGING

Response Status
200
Response Body
{
    "mode": "RESTORING"
}

6.3.3 查看某个图的读模式。

Params
  • name: 图的名称
Method & Url
GET http://localhost:8080/graphs/hugegraph/graph_read_mode
Response Status
200
Response Body
{
    "graph_read_mode": "ALL"
}

6.3.4 设置某个图的读模式。该操作需要管理员权限

Params
  • name: 图的名称
Method & Url
PUT http://localhost:8080/graphs/hugegraph/graph_read_mode
Request Body
"OLTP_ONLY"

合法的图模式包括:ALL,OLTP_ONLY,OLAP_ONLY

Response Status
200
Response Body
{
    "graph_read_mode": "OLTP_ONLY"
}

6.4 Snapshot

6.4.1 创建快照

Params
  • name: 图的名称
Method & Url
PUT http://localhost:8080/graphs/hugegraph/snapshot_create
Response Status
200
Response Body
{
    "hugegraph": "snapshot_created"
}

6.4.2 快照恢复

Params
  • name: 图的名称
Method & Url
PUT http://localhost:8080/graphs/hugegraph/snapshot_resume
Response Status
200
Response Body
{
    "hugegraph": "snapshot_resumed"
}

6.5 Compact

6.5.1 手动压缩图,该操作需要管理员权限

Params
  • name: 图的名称
Method & Url
PUT http://localhost:8080/graphs/hugegraph/compact
Response Status
200
Response Body
{
    "nodes": 1,
    "cluster_id": "local",
    "servers": {
        "local": "OK"
    }
}

1.13 - Task API

7.1 Task

7.1.1 列出某个图中全部的异步任务

Params
  • status: 异步任务的状态
  • limit:返回异步任务数目上限
Method & Url
GET http://localhost:8080/graphs/hugegraph/tasks?status=success
Response Status
200
Response Body
{
	"tasks": [{
		"task_name": "hugegraph.traversal().V()",
		"task_progress": 0,
		"task_create": 1532943976585,
		"task_status": "success",
		"task_update": 1532943976736,
		"task_result": "0",
		"task_retries": 0,
		"id": 2,
		"task_type": "gremlin",
		"task_callable": "org.apache.hugegraph.api.job.GremlinAPI$GremlinJob",
		"task_input": "{\"gremlin\":\"hugegraph.traversal().V()\",\"bindings\":{},\"language\":\"gremlin-groovy\",\"aliases\":{\"hugegraph\":\"graph\"}}"
	}]
}

7.1.2 查看某个异步任务的信息

Method & Url
GET http://localhost:8080/graphs/hugegraph/tasks/2
Response Status
200
Response Body
{
	"task_name": "hugegraph.traversal().V()",
	"task_progress": 0,
	"task_create": 1532943976585,
	"task_status": "success",
	"task_update": 1532943976736,
	"task_result": "0",
	"task_retries": 0,
	"id": 2,
	"task_type": "gremlin",
	"task_callable": "org.apache.hugegraph.api.job.GremlinAPI$GremlinJob",
	"task_input": "{\"gremlin\":\"hugegraph.traversal().V()\",\"bindings\":{},\"language\":\"gremlin-groovy\",\"aliases\":{\"hugegraph\":\"graph\"}}"
}

7.1.3 删除某个异步任务信息,不删除异步任务本身

Method & Url
DELETE http://localhost:8080/graphs/hugegraph/tasks/2
Response Status
204

7.1.4 取消某个异步任务,该异步任务必须具有处理中断的能力

假设已经通过Gremlin API创建了一个异步任务如下:

"for (int i = 0; i < 10; i++) {" +
    "hugegraph.addVertex(T.label, 'man');" +
    "hugegraph.tx().commit();" +
    "try {" +
        "sleep(1000);" +
    "} catch (InterruptedException e) {" +
        "break;" +
    "}" +
"}"
Method & Url
PUT http://localhost:8080/graphs/hugegraph/tasks/2?action=cancel

请保证在 10 秒内发送该请求,如果超过 10 秒发送,任务可能已经执行完成,无法取消。

Response Status
202
Response Body
{
    "cancelled": true
}

此时查询 label 为 man 的顶点数目,一定是小于 10 的。

1.14 - Gremlin API

8.1 Gremlin

8.1.1 向HugeGraphServer发送gremlin语句(GET),同步执行

Params
  • gremlin: 要发送给HugeGraphServer执行的gremlin语句
  • bindings: 用来绑定参数,key是字符串,value是绑定的值(只能是字符串或者数字),功能类似于MySQL的 Prepared Statement,用于加速语句执行
  • language: 发送语句的语言类型,默认为gremlin-groovy
  • aliases: 为存在于图空间的已有变量添加别名

查询顶点

Method & Url
GET http://127.0.0.1:8080/gremlin?gremlin=hugegraph.traversal().V('1:marko')
Response Status
200
Response Body
{
	"requestId": "c6ef47a8-b634-4b07-9d38-6b3b69a3a556",
	"status": {
		"message": "",
		"code": 200,
		"attributes": {}
	},
	"result": {
		"data": [{
			"id": "1:marko",
			"label": "person",
			"type": "vertex",
			"properties": {
				"city": [{
					"id": "1:marko>city",
					"value": "Beijing"
				}],
				"name": [{
					"id": "1:marko>name",
					"value": "marko"
				}],
				"age": [{
					"id": "1:marko>age",
					"value": 29
				}]
			}
		}],
		"meta": {}
	}
}

8.1.2 向HugeGraphServer发送gremlin语句(POST),同步执行

Method & Url
POST http://localhost:8080/gremlin

查询顶点

Request Body
{
	"gremlin": "hugegraph.traversal().V('1:marko')",
	"bindings": {},
	"language": "gremlin-groovy",
	"aliases": {}
}
Response Status
200
Response Body
{
	"requestId": "c6ef47a8-b634-4b07-9d38-6b3b69a3a556",
	"status": {
		"message": "",
		"code": 200,
		"attributes": {}
	},
	"result": {
		"data": [{
			"id": "1:marko",
			"label": "person",
			"type": "vertex",
			"properties": {
				"city": [{
					"id": "1:marko>city",
					"value": "Beijing"
				}],
				"name": [{
					"id": "1:marko>name",
					"value": "marko"
				}],
				"age": [{
					"id": "1:marko>age",
					"value": 29
				}]
			}
		}],
		"meta": {}
	}
}

注意:

这里是直接使用图对象(hugegraph),先获取其遍历器(traversal()),再获取顶点。 不能直接写成graph.traversal().V()g.V(),可以通过"aliases": {"graph": "hugegraph", "g": "__g_hugegraph"} 为图和遍历器添加别名后使用别名操作。其中,hugegraph是原生存在的变量,__g_hugegraphHugeGraphServer额外添加的变量, 每个图都会存在一个对应的这样格式(_g${graph})的遍历器对象。

响应体的结构与其他 Vertex 或 Edge 的 RESTful API的结构有区别,用户可能需要自行解析。

查询边

Request Body
{
	"gremlin": "g.E('S1:marko>2>>S2:lop')",
	"bindings": {},
	"language": "gremlin-groovy",
	"aliases": {
		"graph": "hugegraph", 
		"g": "__g_hugegraph"
	}
}
Response Status
200
Response Body
{
	"requestId": "3f117cd4-eedc-4e08-a106-ee01d7bb8249",
	"status": {
		"message": "",
		"code": 200,
		"attributes": {}
	},
	"result": {
		"data": [{
			"id": "S1:marko>2>>S2:lop",
			"label": "created",
			"type": "edge",
			"inVLabel": "software",
			"outVLabel": "person",
			"inV": "2:lop",
			"outV": "1:marko",
			"properties": {
				"weight": 0.4,
				"date": "20171210"
			}
		}],
		"meta": {}
	}
}

8.1.3 向HugeGraphServer发送gremlin语句(POST),异步执行

Method & Url
POST http://localhost:8080/graphs/hugegraph/jobs/gremlin

查询顶点

Request Body
{
	"gremlin": "g.V('1:marko')",
	"bindings": {},
	"language": "gremlin-groovy",
	"aliases": {}
}

注意:

异步执行Gremlin语句暂不支持aliases,可以使用 graph 代表要操作的图,也可以直接使用图的名字, 例如 hugegraph; 另外g代表 traversal,等价于 graph.traversal() 或者 hugegraph.traversal()

Response Status
201
Response Body
{
	"task_id": 1
}

注:

可以通过GET http://localhost:8080/graphs/hugegraph/tasks/1(其中"1"是task_id)来查询异步任务的执行状态,更多异步任务RESTful API

查询边

Request Body
{
	"gremlin": "g.E('S1:marko>2>>S2:lop')",
	"bindings": {},
	"language": "gremlin-groovy",
	"aliases": {}
}
Response Status
201
Response Body
{
	"task_id": 2
}

注:

可以通过GET http://localhost:8080/graphs/hugegraph/tasks/2(其中"2"是task_id)来查询异步任务的执行状态,更多异步任务RESTful API

1.15 - Cypher API

9.1 Cypher

9.1.1 向HugeGraphServer发送Cypher语句(GET),同步执行

Method & Url
GET /graphs/{graph}/cypher?cypher={cypher}
Params
  • graph: 图名称
  • cypher: cypher语句
使用示例
GET http://localhost:8080/graphs/hugecypher1/cypher?cypher=match(n:person) return n.name as name order by n.name limit 1
Response Status
200
Response Body
{
    "requestId": "766b9f48-2f10-40d9-951a-3027d0748ab7",
    "status": {
        "message": "",
        "code": 200,
        "attributes": {
        }
    },
    "result": {
        "data": [
            {
                "name": "hello"
            }
        ],
        "meta": {
        }
    }
}

9.1.2 向HugeGraphServer发送Cypher语句(POST),同步执行

Method & Url
POST /graphs/{graph}/cypher
Params
  • graph: 图名称
Body

{cypher}

  • cypher: cypher语句

注意:

不是JSON格式,是纯文本的Cypher语句

使用示例
POST http://localhost:8080/graphs/hugecypher1/cypher
Request Body
match(n:person) return n.name as name order by n.name limit 1
Response Status
200
Response Body
{
    "requestId": "f096bee0-e249-498f-b5a3-ea684fc84f57",
    "status": {
        "message": "",
        "code": 200,
        "attributes": {
        }
    },
    "result": {
        "data": [
            {
                "name": "hello"
            }
        ],
        "meta": {
        }
    }
}

1.16 - Authentication API

10.1 用户认证与权限控制

开启权限及相关配置请先参考 权限配置 文档

用户认证与权限控制概述:

HugeGraph 支持多用户认证、以及细粒度的权限访问控制,采用基于“用户 - 用户组 - 操作 - 资源”的 4 层设计,灵活控制用户角色与权限。 资源描述了图数据库中的数据,比如符合某一类条件的顶点,每一个资源包括 type、label、properties 三个要素,共有 18 种 type、 任意 label、任意 properties 的组合形成的资源,一个资源的内部条件是且关系,多个资源之间的条件是或关系。用户可以属于一个或多个用户组, 每个用户组可以拥有对任意个资源的操作权限,操作类型包括:读、写、删除、执行等种类。HugeGraph 支持动态创建用户、用户组、资源, 支持动态分配或取消权限。初始化数据库时超级管理员用户被创建,后续可通过超级管理员创建各类角色用户,新创建的用户如果被分配足够权限后,可以由其创建或管理更多的用户。

举例说明:

user(name=boss) -belong-> group(name=all) -access(read)-> target(graph=graph1, resource={label: person, city: Beijing})
描述:用户’boss’拥有对’graph1’图中北京人的读权限。

接口说明:

用户认证与权限控制接口包括 5 类:UserAPI、GroupAPI、TargetAPI、BelongAPI、AccessAPI。

10.2 用户(User)API

用户接口包括:创建用户,删除用户,修改用户,和查询用户相关信息接口。

10.2.1 创建用户

Params
  • user_name: 用户名称
  • user_password: 用户密码
  • user_phone: 用户手机号
  • user_email: 用户邮箱

其中 user_name 和 user_password 为必填。

Request Body
{
    "user_name": "boss",
    "user_password": "******",
    "user_phone": "182****9088",
    "user_email": "123@xx.com"
}
Method & Url
POST http://localhost:8080/graphs/hugegraph/auth/users
Response Status
201 
Response Body

返回报文中,密码为加密后的密文

{
    "user_password": "******",
    "user_email": "123@xx.com",
    "user_update": "2020-11-17 14:31:07.833",
    "user_name": "boss",
    "user_creator": "admin",
    "user_phone": "182****9088",
    "id": "-63:boss",
    "user_create": "2020-11-17 14:31:07.833"
}

10.2.2 删除用户

Params
  • id: 需要删除的用户 Id
Method & Url
DELETE http://localhost:8080/graphs/hugegraph/auth/users/-63:test
Response Status
204
Response Body
1

10.2.3 修改用户

Params
  • id: 需要修改的用户 Id
Method & Url
PUT http://localhost:8080/graphs/hugegraph/auth/users/-63:test
Request Body

修改 user_name、user_password 和 user_phone

{
    "user_name": "test",
    "user_password": "******",
    "user_phone": "183****9266"
}
Response Status
200
Response Body

返回结果是包含修改过的内容在内的整个用户组对象

{
    "user_password": "******",
    "user_update": "2020-11-12 10:29:30.455",
    "user_name": "test",
    "user_creator": "admin",
    "user_phone": "183****9266",
    "id": "-63:test",
    "user_create": "2020-11-12 10:27:13.601"
}

10.2.4 查询用户列表

Params
  • limit: 返回结果条数的上限
Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/users
Response Status
200
Response Body
{
    "users": [
        {
            "user_password": "******",
            "user_update": "2020-11-11 11:41:12.254",
            "user_name": "admin",
            "user_creator": "system",
            "id": "-63:admin",
            "user_create": "2020-11-11 11:41:12.254"
        }
    ]
}

10.2.5 查询某个用户

Params
  • id: 需要查询的用户 Id
Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/users/-63:admin
Response Status
200
Response Body
{
    "users": [
        {
            "user_password": "******",
            "user_update": "2020-11-11 11:41:12.254",
            "user_name": "admin",
            "user_creator": "system",
            "id": "-63:admin",
            "user_create": "2020-11-11 11:41:12.254"
        }
    ]
}

10.2.6 查询某个用户的角色

Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/users/-63:boss/role
Response Status
200
Response Body
{
    "roles": {
        "hugegraph": {
            "READ": [
                {
                    "type": "ALL",
                    "label": "*",
                    "properties": null
                }
            ]
        }
    }
}

10.3 用户组(Group)API

用户组会赋予相应的资源权限,用户会被分配不同的用户组,即可拥有不同的资源权限。
用户组接口包括:创建用户组,删除用户组,修改用户组,和查询用户组相关信息接口。

10.3.1 创建用户组

Params
  • group_name: 用户组名称
  • group_description: 用户组描述
Request Body
{
    "group_name": "all",
    "group_description": "group can do anything"
}
Method & Url
POST http://localhost:8080/graphs/hugegraph/auth/groups
Response Status
201 
Response Body
{
    "group_creator": "admin",
    "group_name": "all",
    "group_create": "2020-11-11 15:46:08.791",
    "group_update": "2020-11-11 15:46:08.791",
    "id": "-69:all",
    "group_description": "group can do anything"
}

10.3.2 删除用户组

Params
  • id: 需要删除的用户组 Id
Method & Url
DELETE http://localhost:8080/graphs/hugegraph/auth/groups/-69:grant
Response Status
204
Response Body
1

10.3.3 修改用户组

Params
  • id: 需要修改的用户组 Id
Method & Url
PUT http://localhost:8080/graphs/hugegraph/auth/groups/-69:grant
Request Body

修改 group_description

{
    "group_name": "grant",
    "group_description": "grant"
}
Response Status
200
Response Body

返回结果是包含修改过的内容在内的整个用户组对象

{
    "group_creator": "admin",
    "group_name": "grant",
    "group_create": "2020-11-12 09:50:58.458",
    "group_update": "2020-11-12 09:57:58.155",
    "id": "-69:grant",
    "group_description": "grant"
}

10.3.4 查询用户组列表

Params
  • limit: 返回结果条数的上限
Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/groups
Response Status
200
Response Body
{
    "groups": [
        {
            "group_creator": "admin",
            "group_name": "all",
            "group_create": "2020-11-11 15:46:08.791",
            "group_update": "2020-11-11 15:46:08.791",
            "id": "-69:all",
            "group_description": "group can do anything"
        }
    ]
}

10.3.5 查询某个用户组

Params
  • id: 需要查询的用户组 Id
Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/groups/-69:all
Response Status
200
Response Body
{
    "group_creator": "admin",
    "group_name": "all",
    "group_create": "2020-11-11 15:46:08.791",
    "group_update": "2020-11-11 15:46:08.791",
    "id": "-69:all",
    "group_description": "group can do anything"
}

10.4 资源(Target)API

资源描述了图数据库中的数据,比如符合某一类条件的顶点,每一个资源包括 type、label、properties 三个要素,共有 18 种 type、 任意 label、任意 properties 的组合形成的资源,一个资源的内部条件是且关系,多个资源之间的条件是或关系。
资源接口包括:资源的创建、删除、修改和查询。

10.4.1 创建资源

Params
  • target_name: 资源名称
  • target_graph: 资源图
  • target_url: 资源地址
  • target_resources: 资源定义 (列表)

target_resources 可以包括多个 target_resource,以列表的形式存储。
每个 target_resource 包含:

  • type:可选值 VERTEX, EDGE 等,可填 ALL,则表示可以是顶点或边;
  • label:可选值,⼀个顶点或边类型的名称,可填*,则表示任意类型;
  • properties:map 类型,可包含多个属性的键值对,必须匹配所有属性值,属性值⽀持填条件范围(age: P.gte(18)),properties 如果为 null 表示任意属性均可,如果属性名和属性值均为‘*ʼ也表示任意属性均可。

如精细资源:“target_resources”: [{“type”:“VERTEX”,“label”:“person”,“properties”:{“city”:“Beijing”,“age”:“P.gte(20)”}}]**
资源定义含义:类型是’person’的顶点,且城市属性是’Beijing’,年龄属性大于等于 20。

Request Body
{
    "target_name": "all",
    "target_graph": "hugegraph",
    "target_url": "127.0.0.1:8080",
    "target_resources": [
        {
            "type": "ALL"
        }
    ]
}
Method & Url
POST http://localhost:8080/graphs/hugegraph/auth/targets
Response Status
201 
Response Body
{
    "target_creator": "admin",
    "target_name": "all",
    "target_url": "127.0.0.1:8080",
    "target_graph": "hugegraph",
    "target_create": "2020-11-11 15:32:01.192",
    "target_resources": [
        {
            "type": "ALL",
            "label": "*",
            "properties": null
        }
    ],
    "id": "-77:all",
    "target_update": "2020-11-11 15:32:01.192"
}

10.4.2 删除资源

Params
  • id: 需要删除的资源 Id
Method & Url
DELETE http://localhost:8080/graphs/hugegraph/auth/targets/-77:gremlin
Response Status
204
Response Body
1

10.4.3 修改资源

Params
  • id: 需要修改的资源 Id
Method & Url
PUT http://localhost:8080/graphs/hugegraph/auth/targets/-77:gremlin
Request Body

修改资源定义中的 type

{
    "target_name": "gremlin",
    "target_graph": "hugegraph",
    "target_url": "127.0.0.1:8080",
    "target_resources": [
        {
            "type": "NONE"
        }
    ]
}
Response Status
200
Response Body

返回结果是包含修改过的内容在内的整个用户组对象

{
    "target_creator": "admin",
    "target_name": "gremlin",
    "target_url": "127.0.0.1:8080",
    "target_graph": "hugegraph",
    "target_create": "2020-11-12 09:34:13.848",
    "target_resources": [
        {
            "type": "NONE",
            "label": "*",
            "properties": null
        }
    ],
    "id": "-77:gremlin",
    "target_update": "2020-11-12 09:37:12.780"
}

10.4.4 查询资源列表

Params
  • limit: 返回结果条数的上限
Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/targets
Response Status
200
Response Body
{
    "targets": [
        {
            "target_creator": "admin",
            "target_name": "all",
            "target_url": "127.0.0.1:8080",
            "target_graph": "hugegraph",
            "target_create": "2020-11-11 15:32:01.192",
            "target_resources": [
                {
                    "type": "ALL",
                    "label": "*",
                    "properties": null
                }
            ],
            "id": "-77:all",
            "target_update": "2020-11-11 15:32:01.192"
        },
        {
            "target_creator": "admin",
            "target_name": "grant",
            "target_url": "127.0.0.1:8080",
            "target_graph": "hugegraph",
            "target_create": "2020-11-11 15:43:24.841",
            "target_resources": [
                {
                    "type": "GRANT",
                    "label": "*",
                    "properties": null
                }
            ],
            "id": "-77:grant",
            "target_update": "2020-11-11 15:43:24.841"
        }
    ]
}

10.4.5 查询某个资源

Params
  • id: 需要查询的资源 Id
Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/targets/-77:grant
Response Status
200
Response Body
{
    "target_creator": "admin",
    "target_name": "grant",
    "target_url": "127.0.0.1:8080",
    "target_graph": "hugegraph",
    "target_create": "2020-11-11 15:43:24.841",
    "target_resources": [
        {
            "type": "GRANT",
            "label": "*",
            "properties": null
        }
    ],
    "id": "-77:grant",
    "target_update": "2020-11-11 15:43:24.841"
}

10.5 关联角色(Belong)API

关联用户和用户组的关系,一个用户可以关联一个或者多个用户组。用户组拥有相关资源的权限,不同用户组的资源权限可以理解为不同的角色。即给用户关联角色。
关联角色接口包括:用户关联角色的创建、删除、修改和查询。

10.5.1 创建用户的关联角色

Params
  • user: 用户 Id
  • group: 用户组 Id
  • belong_description: 描述
Request Body
{
    "user": "-63:boss",
    "group": "-69:all"
}
Method & Url
POST http://localhost:8080/graphs/hugegraph/auth/belongs
Response Status
201 
Response Body
{
    "belong_create": "2020-11-11 16:19:35.422",
    "belong_creator": "admin",
    "belong_update": "2020-11-11 16:19:35.422",
    "id": "S-63:boss>-82>>S-69:all",
    "user": "-63:boss",
    "group": "-69:all"
}

10.5.2 删除关联角色

Params
  • id: 需要删除的关联角色 Id
Method & Url
DELETE http://localhost:8080/graphs/hugegraph/auth/belongs/S-63:boss>-82>>S-69:grant
Response Status
204
Response Body
1

10.5.3 修改关联角色

关联角色只能修改描述,不能修改 user 和 group 属性,如果需要修改关联角色,需要删除原来关联关系,新增关联角色。

Params
  • id: 需要修改的关联角色 Id
Method & Url
PUT http://localhost:8080/graphs/hugegraph/auth/belongs/S-63:boss>-82>>S-69:grant
Request Body

修改 belong_description

{
    "belong_description": "update test"
}
Response Status
200
Response Body

返回结果是包含修改过的内容在内的整个用户组对象

{
    "belong_description": "update test",
    "belong_create": "2020-11-12 10:40:21.720",
    "belong_creator": "admin",
    "belong_update": "2020-11-12 10:42:47.265",
    "id": "S-63:boss>-82>>S-69:grant",
    "user": "-63:boss",
    "group": "-69:grant"
}

10.5.4 查询关联角色列表

Params
  • limit: 返回结果条数的上限
Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/belongs
Response Status
200
Response Body
{
    "belongs": [
        {
            "belong_create": "2020-11-11 16:19:35.422",
            "belong_creator": "admin",
            "belong_update": "2020-11-11 16:19:35.422",
            "id": "S-63:boss>-82>>S-69:all",
            "user": "-63:boss",
            "group": "-69:all"
        }
    ]
}

10.5.5 查看某个关联角色

Params
  • id: 需要查询的关联角色 Id
Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/belongs/S-63:boss>-82>>S-69:all
Response Status
200
Response Body
{
    "belong_create": "2020-11-11 16:19:35.422",
    "belong_creator": "admin",
    "belong_update": "2020-11-11 16:19:35.422",
    "id": "S-63:boss>-82>>S-69:all",
    "user": "-63:boss",
    "group": "-69:all"
}

10.6 赋权(Access)API

给用户组赋予资源的权限,主要包含:读操作 (READ)、写操作 (WRITE)、删除操作 (DELETE)、执行操作 (EXECUTE) 等。
赋权接口包括:赋权的创建、删除、修改和查询。

10.6.1 创建赋权 (用户组赋予资源的权限)

Params
  • group: 用户组 Id
  • target: 资源 Id
  • access_permission: 权限许可
  • access_description: 赋权描述

access_permission:

  • READ:读操作,所有的查询,包括查询 Schema、查顶点/边,查询顶点和边的数量 VERTEX_AGGR/EDGE_AGGR,也包括读图的状态 STATUS、变量 VAR、任务 TASK 等;
  • WRITE:写操作,所有的创建、更新操作,包括给 Schema 增加 property key,给顶点增加或更新属性等;
  • DELETE:删除操作,包括删除元数据、删除顶点/边;
  • EXECUTE:执⾏操作,包括执⾏ Gremlin 语句、执⾏ Task、执⾏ metadata 函数;
Request Body
{
    "group": "-69:all",
    "target": "-77:all",
    "access_permission": "READ"
}
Method & Url
POST http://localhost:8080/graphs/hugegraph/auth/accesses
Response Status
201 
Response Body
{
    "access_permission": "READ",
    "access_create": "2020-11-11 15:54:54.008",
    "id": "S-69:all>-88>11>S-77:all",
    "access_update": "2020-11-11 15:54:54.008",
    "access_creator": "admin",
    "group": "-69:all",
    "target": "-77:all"
}

10.6.2 删除赋权

Params
  • id: 需要删除的赋权 Id
Method & Url
DELETE http://localhost:8080/graphs/hugegraph/auth/accesses/S-69:all>-88>12>S-77:all
Response Status
204
Response Body
1

10.6.3 修改赋权

赋权只能修改描述,不能修改用户组、资源和权限许可,如果需要修改赋权的关系,可以删除原来的赋权关系,新增赋权。

Params
  • id: 需要修改的赋权 Id
Method & Url
PUT http://localhost:8080/graphs/hugegraph/auth/accesses/S-69:all>-88>12>S-77:all
Request Body

修改 access_description

{
    "access_description": "test"
}
Response Status
200
Response Body

返回结果是包含修改过的内容在内的整个用户组对象

{
    "access_description": "test",
    "access_permission": "WRITE",
    "access_create": "2020-11-12 10:12:03.074",
    "id": "S-69:all>-88>12>S-77:all",
    "access_update": "2020-11-12 10:16:18.637",
    "access_creator": "admin",
    "group": "-69:all",
    "target": "-77:all"
}

10.6.4 查询赋权列表

Params
  • limit: 返回结果条数的上限
Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/accesses
Response Status
200
Response Body
{
    "accesses": [
        {
            "access_permission": "READ",
            "access_create": "2020-11-11 15:54:54.008",
            "id": "S-69:all>-88>11>S-77:all",
            "access_update": "2020-11-11 15:54:54.008",
            "access_creator": "admin",
            "group": "-69:all",
            "target": "-77:all"
        }
    ]
}

10.6.5 查询某个赋权

Params
  • id: 需要查询的赋权 Id
Method & Url
GET http://localhost:8080/graphs/hugegraph/auth/accesses/S-69:all>-88>11>S-77:all
Response Status
200
Response Body
{
    "access_permission": "READ",
    "access_create": "2020-11-11 15:54:54.008",
    "id": "S-69:all>-88>11>S-77:all",
    "access_update": "2020-11-11 15:54:54.008",
    "access_creator": "admin",
    "group": "-69:all",
    "target": "-77:all"
}

1.17 - Metrics API

HugeGraph 提供了获取监控信息的 Metrics 接口,比如各个 Gremlin 执行时间的统计、缓存的占用大小等。Metrics 接口包括如下几类:基础指标、统计指标、系统指标、后端存储指标。

1. 基础指标

1.1 获取所有基础指标

Params
  • type:如果传值为json,则以 json 格式返回,否则以 Promethaus 格式返回。
1.1.1 Method & Url
http://localhost:8080/metrics/?type=json
Response Status
200
Response Body
{
  "gauges": {
    "org.apache.hugegraph.backend.cache.Cache.edge-hugegraph.capacity": {
      "value": 1000000
    },
    "org.apache.hugegraph.backend.cache.Cache.edge-hugegraph.expire": {
      "value": 600000
    },
    "org.apache.hugegraph.backend.cache.Cache.edge-hugegraph.hits": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.edge-hugegraph.miss": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.edge-hugegraph.size": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.instances": {
      "value": 7
    },
    "org.apache.hugegraph.backend.cache.Cache.schema-id-hugegraph.capacity": {
      "value": 10000
    },
    "org.apache.hugegraph.backend.cache.Cache.schema-id-hugegraph.expire": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.schema-id-hugegraph.hits": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.schema-id-hugegraph.miss": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.schema-id-hugegraph.size": {
      "value": 17
    },
    "org.apache.hugegraph.backend.cache.Cache.schema-name-hugegraph.capacity": {
      "value": 10000
    },
    "org.apache.hugegraph.backend.cache.Cache.schema-name-hugegraph.expire": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.schema-name-hugegraph.hits": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.schema-name-hugegraph.miss": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.schema-name-hugegraph.size": {
      "value": 17
    },
    "org.apache.hugegraph.backend.cache.Cache.token-hugegraph.capacity": {
      "value": 10240
    },
    "org.apache.hugegraph.backend.cache.Cache.token-hugegraph.expire": {
      "value": 600000
    },
    "org.apache.hugegraph.backend.cache.Cache.token-hugegraph.hits": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.token-hugegraph.miss": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.token-hugegraph.size": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.users-hugegraph.capacity": {
      "value": 10240
    },
    "org.apache.hugegraph.backend.cache.Cache.users-hugegraph.expire": {
      "value": 600000
    },
    "org.apache.hugegraph.backend.cache.Cache.users-hugegraph.hits": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.users-hugegraph.miss": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.users-hugegraph.size": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.users_pwd-hugegraph.capacity": {
      "value": 10240
    },
    "org.apache.hugegraph.backend.cache.Cache.users_pwd-hugegraph.expire": {
      "value": 600000
    },
    "org.apache.hugegraph.backend.cache.Cache.users_pwd-hugegraph.hits": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.users_pwd-hugegraph.miss": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.users_pwd-hugegraph.size": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.vertex-hugegraph.capacity": {
      "value": 10000000
    },
    "org.apache.hugegraph.backend.cache.Cache.vertex-hugegraph.expire": {
      "value": 600000
    },
    "org.apache.hugegraph.backend.cache.Cache.vertex-hugegraph.hits": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.vertex-hugegraph.miss": {
      "value": 0
    },
    "org.apache.hugegraph.backend.cache.Cache.vertex-hugegraph.size": {
      "value": 0
    },
    "org.apache.hugegraph.server.RestServer.max-write-threads": {
      "value": 0
    },
    "org.apache.hugegraph.task.TaskManager.pending-tasks": {
      "value": 0
    },
    "org.apache.hugegraph.task.TaskManager.workers": {
      "value": 4
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.average-load-penalty": {
      "value": 922769200
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.estimated-size": {
      "value": 2
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.eviction-count": {
      "value": 0
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.eviction-weight": {
      "value": 0
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.hit-count": {
      "value": 0
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.hit-rate": {
      "value": 0
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.load-count": {
      "value": 2
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.load-failure-count": {
      "value": 0
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.load-failure-rate": {
      "value": 0
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.load-success-count": {
      "value": 2
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.long-run-compilation-count": {
      "value": 0
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.miss-count": {
      "value": 2
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.miss-rate": {
      "value": 1
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.request-count": {
      "value": 2
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.total-load-time": {
      "value": 1845538400
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.sessions": {
      "value": 0
    }
  },
  "counters": {
    "favicon.ico/GET/FAILED_COUNTER": {
      "count": 1
    },
    "favicon.ico/GET/TOTAL_COUNTER": {
      "count": 1
    },
    "metrics/POST/FAILED_COUNTER": {
      "count": 1
    },
    "metrics/POST/TOTAL_COUNTER": {
      "count": 1
    },
    "metrics/backend/GET/SUCCESS_COUNTER": {
      "count": 2
    },
    "metrics/backend/GET/TOTAL_COUNTER": {
      "count": 2
    },
    "metrics/gauges/GET/SUCCESS_COUNTER": {
      "count": 1
    },
    "metrics/gauges/GET/TOTAL_COUNTER": {
      "count": 1
    },
    "metrics/system/GET/SUCCESS_COUNTER": {
      "count": 2
    },
    "metrics/system/GET/TOTAL_COUNTER": {
      "count": 2
    },
    "system/GET/FAILED_COUNTER": {
      "count": 1
    },
    "system/GET/TOTAL_COUNTER": {
      "count": 1
    }
  },
  "histograms": {
    "favicon.ico/GET/RESPONSE_TIME_HISTOGRAM": {
      "count": 1,
      "min": 1,
      "mean": 1,
      "max": 1,
      "stddev": 0,
      "p50": 1,
      "p75": 1,
      "p95": 1,
      "p98": 1,
      "p99": 1,
      "p999": 1
    },
    "metrics/POST/RESPONSE_TIME_HISTOGRAM": {
      "count": 1,
      "min": 21,
      "mean": 21,
      "max": 21,
      "stddev": 0,
      "p50": 21,
      "p75": 21,
      "p95": 21,
      "p98": 21,
      "p99": 21,
      "p999": 21
    },
    "metrics/backend/GET/RESPONSE_TIME_HISTOGRAM": {
      "count": 2,
      "min": 6,
      "mean": 12.6852124529148,
      "max": 20,
      "stddev": 6.992918475157571,
      "p50": 6,
      "p75": 20,
      "p95": 20,
      "p98": 20,
      "p99": 20,
      "p999": 20
    },
    "metrics/gauges/GET/RESPONSE_TIME_HISTOGRAM": {
      "count": 1,
      "min": 7,
      "mean": 7,
      "max": 7,
      "stddev": 0,
      "p50": 7,
      "p75": 7,
      "p95": 7,
      "p98": 7,
      "p99": 7,
      "p999": 7
    },
    "metrics/system/GET/RESPONSE_TIME_HISTOGRAM": {
      "count": 2,
      "min": 0,
      "mean": 8.942674506664073,
      "max": 40,
      "stddev": 16.665399873223066,
      "p50": 0,
      "p75": 0,
      "p95": 40,
      "p98": 40,
      "p99": 40,
      "p999": 40
    },
    "system/GET/RESPONSE_TIME_HISTOGRAM": {
      "count": 1,
      "min": 2,
      "mean": 2,
      "max": 2,
      "stddev": 0,
      "p50": 2,
      "p75": 2,
      "p95": 2,
      "p98": 2,
      "p99": 2,
      "p999": 2
    }
  },
  "meters": {
    "org.apache.hugegraph.api.API.commit-succeed": {
      "count": 0,
      "mean_rate": 0,
      "m15_rate": 0,
      "m5_rate": 0,
      "m1_rate": 0,
      "rate_unit": "events/second"
    },
    "org.apache.hugegraph.api.API.expected-error": {
      "count": 0,
      "mean_rate": 0,
      "m15_rate": 0,
      "m5_rate": 0,
      "m1_rate": 0,
      "rate_unit": "events/second"
    },
    "org.apache.hugegraph.api.API.illegal-arg": {
      "count": 0,
      "mean_rate": 0,
      "m15_rate": 0,
      "m5_rate": 0,
      "m1_rate": 0,
      "rate_unit": "events/second"
    },
    "org.apache.hugegraph.api.API.unknown-error": {
      "count": 0,
      "mean_rate": 0,
      "m15_rate": 0,
      "m5_rate": 0,
      "m1_rate": 0,
      "rate_unit": "events/second"
    },
    "org.apache.tinkerpop.gremlin.server.GremlinServer.errors": {
      "count": 0,
      "mean_rate": 0,
      "m15_rate": 0,
      "m5_rate": 0,
      "m1_rate": 0,
      "rate_unit": "events/second"
    }
  },
  "timers": {
    "org.apache.hugegraph.api.auth.AccessAPI.create": {
      "count": 0,
      "min": 0,
      "mean": 0,
      "max": 0,
      "stddev": 0,
      "p50": 0,
      "p75": 0,
      "p95": 0,
      "p98": 0,
      "p99": 0,
      "p999": 0,
      "duration_unit": "milliseconds",
      "mean_rate": 0,
      "m15_rate": 0,
      "m5_rate": 0,
      "m1_rate": 0,
      "rate_unit": "calls/second"
    },
    "org.apache.hugegraph.api.auth.AccessAPI.delete": {
      "count": 0,
      "min": 0,
      "mean": 0,
      "max": 0,
      "stddev": 0,
      "p50": 0,
      "p75": 0,
      "p95": 0,
      "p98": 0,
      "p99": 0,
      "p999": 0,
      "duration_unit": "milliseconds",
      "mean_rate": 0,
      "m15_rate": 0,
      "m5_rate": 0,
      "m1_rate": 0,
      "rate_unit": "calls/second"
    },
    "org.apache.hugegraph.api.auth.AccessAPI.get": {
      "count": 0,
      "min": 0,
      "mean": 0,
      "max": 0,
      "stddev": 0,
      "p50": 0,
      "p75": 0,
      "p95": 0,
      "p98": 0,
      "p99": 0,
      "p999": 0,
      "duration_unit": "milliseconds",
      "mean_rate": 0,
      "m15_rate": 0,
      "m5_rate": 0,
      "m1_rate": 0,
      "rate_unit": "calls/second"
    },
    "org.apache.hugegraph.api.auth.AccessAPI.list": {
      "count": 0,
      "min": 0,
      "mean": 0,
      "max": 0,
      "stddev": 0,
      "p50": 0,
      "p75": 0,
      "p95": 0,
      "p98": 0,
      "p99": 0,
      "p999": 0,
      "duration_unit": "milliseconds",
      "mean_rate": 0,
      "m15_rate": 0,
      "m5_rate": 0,
      "m1_rate": 0,
      "rate_unit": "calls/second"
    },
    ...
  }
}
1.1.2 Method & Url
http://localhost:8080/metrics/
Response Status
200
Response Body
# HELP hugegraph_info
# TYPE hugegraph_info untyped
hugegraph_info{version="0.69",
} 1.0
# HELP org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_capacity
# TYPE org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_capacity gauge
org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_capacity 1000000
# HELP org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_expire
# TYPE org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_expire gauge
org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_expire 600000
# HELP org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_hits
# TYPE org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_hits gauge
org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_hits 0
# HELP org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_miss
# TYPE org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_miss gauge
org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_miss 0
# HELP org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_size
# TYPE org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_size gauge
org_apache_hugegraph_backend_cache_Cache_edge_hugegraph_size 0
# HELP org_apache_hugegraph_backend_cache_Cache_instances
# TYPE org_apache_hugegraph_backend_cache_Cache_instances gauge
org_apache_hugegraph_backend_cache_Cache_instances 7
# HELP org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_capacity
# TYPE org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_capacity gauge
org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_capacity 10000
# HELP org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_expire
# TYPE org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_expire gauge
org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_expire 0
# HELP org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_hits
# TYPE org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_hits gauge
org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_hits 0
# HELP org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_miss
# TYPE org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_miss gauge
org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_miss 0
# HELP org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_size
# TYPE org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_size gauge
org_apache_hugegraph_backend_cache_Cache_schema_id_hugegraph_size 17
# HELP org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_capacity
# TYPE org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_capacity gauge
org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_capacity 10000
# HELP org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_expire
# TYPE org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_expire gauge
org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_expire 0
# HELP org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_hits
# TYPE org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_hits gauge
org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_hits 0
# HELP org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_miss
# TYPE org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_miss gauge
org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_miss 0
# HELP org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_size
# TYPE org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_size gauge
org_apache_hugegraph_backend_cache_Cache_schema_name_hugegraph_size 17
...

1.2 获取 Gauges 指标

Method & Url
http://localhost:8080/metrics/gauges
Response Status
200
Response Body
{
  "org.apache.hugegraph.backend.cache.Cache.edge-hugegraph.capacity": {
    "value": 1000000
  },
  "org.apache.hugegraph.backend.cache.Cache.edge-hugegraph.expire": {
    "value": 600000
  },
  "org.apache.hugegraph.backend.cache.Cache.edge-hugegraph.hits": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.edge-hugegraph.miss": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.edge-hugegraph.size": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.instances": {
    "value": 7
  },
  "org.apache.hugegraph.backend.cache.Cache.schema-id-hugegraph.capacity": {
    "value": 10000
  },
  "org.apache.hugegraph.backend.cache.Cache.schema-id-hugegraph.expire": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.schema-id-hugegraph.hits": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.schema-id-hugegraph.miss": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.schema-id-hugegraph.size": {
    "value": 17
  },
  "org.apache.hugegraph.backend.cache.Cache.schema-name-hugegraph.capacity": {
    "value": 10000
  },
  "org.apache.hugegraph.backend.cache.Cache.schema-name-hugegraph.expire": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.schema-name-hugegraph.hits": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.schema-name-hugegraph.miss": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.schema-name-hugegraph.size": {
    "value": 17
  },
  "org.apache.hugegraph.backend.cache.Cache.token-hugegraph.capacity": {
    "value": 10240
  },
  "org.apache.hugegraph.backend.cache.Cache.token-hugegraph.expire": {
    "value": 600000
  },
  "org.apache.hugegraph.backend.cache.Cache.token-hugegraph.hits": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.token-hugegraph.miss": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.token-hugegraph.size": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.users-hugegraph.capacity": {
    "value": 10240
  },
  "org.apache.hugegraph.backend.cache.Cache.users-hugegraph.expire": {
    "value": 600000
  },
  "org.apache.hugegraph.backend.cache.Cache.users-hugegraph.hits": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.users-hugegraph.miss": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.users-hugegraph.size": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.users_pwd-hugegraph.capacity": {
    "value": 10240
  },
  "org.apache.hugegraph.backend.cache.Cache.users_pwd-hugegraph.expire": {
    "value": 600000
  },
  "org.apache.hugegraph.backend.cache.Cache.users_pwd-hugegraph.hits": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.users_pwd-hugegraph.miss": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.users_pwd-hugegraph.size": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.vertex-hugegraph.capacity": {
    "value": 10000000
  },
  "org.apache.hugegraph.backend.cache.Cache.vertex-hugegraph.expire": {
    "value": 600000
  },
  "org.apache.hugegraph.backend.cache.Cache.vertex-hugegraph.hits": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.vertex-hugegraph.miss": {
    "value": 0
  },
  "org.apache.hugegraph.backend.cache.Cache.vertex-hugegraph.size": {
    "value": 0
  },
  "org.apache.hugegraph.server.RestServer.max-write-threads": {
    "value": 0
  },
  "org.apache.hugegraph.task.TaskManager.pending-tasks": {
    "value": 0
  },
  "org.apache.hugegraph.task.TaskManager.workers": {
    "value": 4
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.average-load-penalty": {
    "value": 9.227692E8
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.estimated-size": {
    "value": 2
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.eviction-count": {
    "value": 0
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.eviction-weight": {
    "value": 0
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.hit-count": {
    "value": 0
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.hit-rate": {
    "value": 0.0
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.load-count": {
    "value": 2
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.load-failure-count": {
    "value": 0
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.load-failure-rate": {
    "value": 0.0
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.load-success-count": {
    "value": 2
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.long-run-compilation-count": {
    "value": 0
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.miss-count": {
    "value": 2
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.miss-rate": {
    "value": 1.0
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.request-count": {
    "value": 2
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.gremlin-groovy.sessionless.class-cache.total-load-time": {
    "value": 1845538400
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.sessions": {
    "value": 0
  }
}

1.3 获取 Counters 指标

Method & Url
GET http://localhost:8080/metrics/counters
Response Status
200
Response Body
{
  "favicon.ico/GET/FAILED_COUNTER": {
    "count": 1
  },
  "favicon.ico/GET/TOTAL_COUNTER": {
    "count": 1
  },
  "metrics//GET/SUCCESS_COUNTER": {
    "count": 2
  },
  "metrics//GET/TOTAL_COUNTER": {
    "count": 2
  },
  "metrics/POST/FAILED_COUNTER": {
    "count": 1
  },
  "metrics/POST/TOTAL_COUNTER": {
    "count": 1
  },
  "metrics/backend/GET/SUCCESS_COUNTER": {
    "count": 2
  },
  "metrics/backend/GET/TOTAL_COUNTER": {
    "count": 2
  },
  "metrics/gauges/GET/SUCCESS_COUNTER": {
    "count": 1
  },
  "metrics/gauges/GET/TOTAL_COUNTER": {
    "count": 1
  },
  "metrics/statistics/GET/SUCCESS_COUNTER": {
    "count": 2
  },
  "metrics/statistics/GET/TOTAL_COUNTER": {
    "count": 2
  },
  "metrics/system/GET/SUCCESS_COUNTER": {
    "count": 2
  },
  "metrics/system/GET/TOTAL_COUNTER": {
    "count": 2
  },
  "metrics/timers/GET/SUCCESS_COUNTER": {
    "count": 1
  },
  "metrics/timers/GET/TOTAL_COUNTER": {
    "count": 1
  },
  "system/GET/FAILED_COUNTER": {
    "count": 1
  },
  "system/GET/TOTAL_COUNTER": {
    "count": 1
  }
}

1.4 获取 histograms 指标

Method & Url
GET http://localhost:8080/metrics/gauges
Response Status
200
Response Body
{
  "favicon.ico/GET/RESPONSE_TIME_HISTOGRAM": {
    "count": 1,
    "min": 1,
    "mean": 1.0,
    "max": 1,
    "stddev": 0.0,
    "p50": 1.0,
    "p75": 1.0,
    "p95": 1.0,
    "p98": 1.0,
    "p99": 1.0,
    "p999": 1.0
  },
  "metrics//GET/RESPONSE_TIME_HISTOGRAM": {
    "count": 2,
    "min": 10,
    "mean": 10.0,
    "max": 10,
    "stddev": 0.0,
    "p50": 10.0,
    "p75": 10.0,
    "p95": 10.0,
    "p98": 10.0,
    "p99": 10.0,
    "p999": 10.0
  },
  "metrics/POST/RESPONSE_TIME_HISTOGRAM": {
    "count": 1,
    "min": 21,
    "mean": 21.0,
    "max": 21,
    "stddev": 0.0,
    "p50": 21.0,
    "p75": 21.0,
    "p95": 21.0,
    "p98": 21.0,
    "p99": 21.0,
    "p999": 21.0
  },
  "metrics/backend/GET/RESPONSE_TIME_HISTOGRAM": {
    "count": 2,
    "min": 6,
    "mean": 12.6852124529148,
    "max": 20,
    "stddev": 6.992918475157571,
    "p50": 6.0,
    "p75": 20.0,
    "p95": 20.0,
    "p98": 20.0,
    "p99": 20.0,
    "p999": 20.0
  },
  "metrics/gauges/GET/RESPONSE_TIME_HISTOGRAM": {
    "count": 1,
    "min": 7,
    "mean": 7.0,
    "max": 7,
    "stddev": 0.0,
    "p50": 7.0,
    "p75": 7.0,
    "p95": 7.0,
    "p98": 7.0,
    "p99": 7.0,
    "p999": 7.0
  },
  "metrics/statistics/GET/RESPONSE_TIME_HISTOGRAM": {
    "count": 2,
    "min": 1,
    "mean": 1.4551211076264199,
    "max": 2,
    "stddev": 0.49798181193626,
    "p50": 1.0,
    "p75": 2.0,
    "p95": 2.0,
    "p98": 2.0,
    "p99": 2.0,
    "p999": 2.0
  },
  "metrics/system/GET/RESPONSE_TIME_HISTOGRAM": {
    "count": 2,
    "min": 0,
    "mean": 8.942674506664073,
    "max": 40,
    "stddev": 16.665399873223066,
    "p50": 0.0,
    "p75": 0.0,
    "p95": 40.0,
    "p98": 40.0,
    "p99": 40.0,
    "p999": 40.0
  },
  "metrics/timers/GET/RESPONSE_TIME_HISTOGRAM": {
    "count": 1,
    "min": 3,
    "mean": 3.0,
    "max": 3,
    "stddev": 0.0,
    "p50": 3.0,
    "p75": 3.0,
    "p95": 3.0,
    "p98": 3.0,
    "p99": 3.0,
    "p999": 3.0
  },
  "system/GET/RESPONSE_TIME_HISTOGRAM": {
    "count": 1,
    "min": 2,
    "mean": 2.0,
    "max": 2,
    "stddev": 0.0,
    "p50": 2.0,
    "p75": 2.0,
    "p95": 2.0,
    "p98": 2.0,
    "p99": 2.0,
    "p999": 2.0
  }
}

1.5 获取 meters 指标

Method & Url
GET http://localhost:8080/metrics/meters
Response Status
200
Response Body
{
  "org.apache.hugegraph.api.API.commit-succeed": {
    "count": 0,
    "mean_rate": 0.0,
    "m15_rate": 0.0,
    "m5_rate": 0.0,
    "m1_rate": 0.0,
    "rate_unit": "events/second"
  },
  "org.apache.hugegraph.api.API.expected-error": {
    "count": 0,
    "mean_rate": 0.0,
    "m15_rate": 0.0,
    "m5_rate": 0.0,
    "m1_rate": 0.0,
    "rate_unit": "events/second"
  },
  "org.apache.hugegraph.api.API.illegal-arg": {
    "count": 0,
    "mean_rate": 0.0,
    "m15_rate": 0.0,
    "m5_rate": 0.0,
    "m1_rate": 0.0,
    "rate_unit": "events/second"
  },
  "org.apache.hugegraph.api.API.unknown-error": {
    "count": 0,
    "mean_rate": 0.0,
    "m15_rate": 0.0,
    "m5_rate": 0.0,
    "m1_rate": 0.0,
    "rate_unit": "events/second"
  },
  "org.apache.tinkerpop.gremlin.server.GremlinServer.errors": {
    "count": 0,
    "mean_rate": 0.0,
    "m15_rate": 0.0,
    "m5_rate": 0.0,
    "m1_rate": 0.0,
    "rate_unit": "events/second"
  }
}

1.6 获取 timers 指标

Method & Url
GET http://localhost:8080/metrics/timers
Response Status
200
Response Body
{
  "org.apache.hugegraph.api.auth.AccessAPI.create": {
    "count": 0,
    "min": 0.0,
    "mean": 0.0,
    "max": 0.0,
    "stddev": 0.0,
    "p50": 0.0,
    "p75": 0.0,
    "p95": 0.0,
    "p98": 0.0,
    "p99": 0.0,
    "p999": 0.0,
    "duration_unit": "milliseconds",
    "mean_rate": 0.0,
    "m15_rate": 0.0,
    "m5_rate": 0.0,
    "m1_rate": 0.0,
    "rate_unit": "calls/second"
  },
  "org.apache.hugegraph.api.auth.AccessAPI.delete": {
    "count": 0,
    "min": 0.0,
    "mean": 0.0,
    "max": 0.0,
    "stddev": 0.0,
    "p50": 0.0,
    "p75": 0.0,
    "p95": 0.0,
    "p98": 0.0,
    "p99": 0.0,
    "p999": 0.0,
    "duration_unit": "milliseconds",
    "mean_rate": 0.0,
    "m15_rate": 0.0,
    "m5_rate": 0.0,
    "m1_rate": 0.0,
    "rate_unit": "calls/second"
  },
  ...
}

2.统计指标

Params
  • type:如果传值为 json,则以 json 格式返回,否则以 Promethaus 格式返回。
2.1 Method & Url
GET http://localhost:8080/metrics/statistics
Response Status
# HELP hugegraph_info
# TYPE hugegraph_info untyped
hugegraph_info{version="0.69",
} 1.0
# HELP metrics_POST
# TYPE metrics_POST gauge
metrics_POST{name=FAILED_REQUEST,} 1
metrics_POST{name=MEAN_RESPONSE_TIME,} 21.0
metrics_POST{
name=MAX_RESPONSE_TIME,
} 21
metrics_POST{name=SUCCESS_REQUEST,
} 0
metrics_POST{
name=TOTAL_REQUEST,
} 1
# HELP metrics_backend_GET
# TYPE metrics_backend_GET gauge
metrics_backend_GET{name=FAILED_REQUEST,
} 0
metrics_backend_GET{
name=MEAN_RESPONSE_TIME,
} 12.6852124529148
metrics_backend_GET{
name=MAX_RESPONSE_TIME,
} 20
metrics_backend_GET{
name=SUCCESS_REQUEST,
} 2
metrics_backend_GET{name=TOTAL_REQUEST,} 2
# HELP system_GET
# TYPE system_GET gauge
system_GET{name=FAILED_REQUEST,} 1
system_GET{name=MEAN_RESPONSE_TIME,} 2.0
system_GET{name=MAX_RESPONSE_TIME,} 2
system_GET{
name=SUCCESS_REQUEST,
} 0
system_GET{name=TOTAL_REQUEST,
} 1
# HELP metrics_gauges_GET
# TYPE metrics_gauges_GET gauge
metrics_gauges_GET{name=FAILED_REQUEST,} 0
metrics_gauges_GET{name=MEAN_RESPONSE_TIME,
} 7.0
metrics_gauges_GET{
name=MAX_RESPONSE_TIME,
} 7
metrics_gauges_GET{
name=SUCCESS_REQUEST,
} 1
metrics_gauges_GET{
name=TOTAL_REQUEST,
} 1
# HELP favicon.ico_GET
# TYPE favicon.ico_GET gauge
favicon.ico_GET{name=FAILED_REQUEST,
} 1
favicon.ico_GET{
name=MEAN_RESPONSE_TIME,
} 1.0
favicon.ico_GET{name=MAX_RESPONSE_TIME,} 1
favicon.ico_GET{name=SUCCESS_REQUEST,} 0
favicon.ico_GET{
name=TOTAL_REQUEST,
} 1
# HELP metrics__GET
# TYPE metrics__GET gauge
metrics__GET{name=FAILED_REQUEST,} 0
metrics__GET{name=MEAN_RESPONSE_TIME,} 10.0
metrics__GET{name=MAX_RESPONSE_TIME,
} 10
metrics__GET{
name=SUCCESS_REQUEST,
} 2
metrics__GET{
name=TOTAL_REQUEST,
} 2
# HELP metrics_system_GET
# TYPE metrics_system_GET gauge
metrics_system_GET{name=FAILED_REQUEST,} 0
metrics_system_GET{name=MEAN_RESPONSE_TIME,
} 8.942674506664073
metrics_system_GET{
name=MAX_RESPONSE_TIME,
} 40
metrics_system_GET{name=SUCCESS_REQUEST,} 2
metrics_system_GET{name=TOTAL_REQUEST,
} 2
Response Body
200
2.2 Method & Url
GET http://localhost:8080/metrics/statistics?type=json
Response Status
200
Response Body
{
  "metrics/POST": {
    "FAILED_REQUEST": 1,
    "MEAN_RESPONSE_TIME": 21,
    "MAX_RESPONSE_TIME": 21,
    "SUCCESS_REQUEST": 0,
    "TOTAL_REQUEST": 1
  },
  "metrics/backend/GET": {
    "FAILED_REQUEST": 0,
    "MEAN_RESPONSE_TIME": 12.6852124529148,
    "MAX_RESPONSE_TIME": 20,
    "SUCCESS_REQUEST": 2,
    "TOTAL_REQUEST": 2
  },
  "system/GET": {
    "FAILED_REQUEST": 1,
    "MEAN_RESPONSE_TIME": 2,
    "MAX_RESPONSE_TIME": 2,
    "SUCCESS_REQUEST": 0,
    "TOTAL_REQUEST": 1
  },
  "metrics/gauges/GET": {
    "FAILED_REQUEST": 0,
    "MEAN_RESPONSE_TIME": 7,
    "MAX_RESPONSE_TIME": 7,
    "SUCCESS_REQUEST": 1,
    "TOTAL_REQUEST": 1
  },
  "favicon.ico/GET": {
    "FAILED_REQUEST": 1,
    "MEAN_RESPONSE_TIME": 1,
    "MAX_RESPONSE_TIME": 1,
    "SUCCESS_REQUEST": 0,
    "TOTAL_REQUEST": 1
  },
  "metrics//GET": {
    "FAILED_REQUEST": 0,
    "MEAN_RESPONSE_TIME": 10,
    "MAX_RESPONSE_TIME": 10,
    "SUCCESS_REQUEST": 2,
    "TOTAL_REQUEST": 2
  },
  "metrics/system/GET": {
    "FAILED_REQUEST": 0,
    "MEAN_RESPONSE_TIME": 8.942674506664073,
    "MAX_RESPONSE_TIME": 40,
    "SUCCESS_REQUEST": 2,
    "TOTAL_REQUEST": 2
  }
}

3.系统指标

系统指标主要返回机器运行指标,如内存、线程等信息。

Method & Url
GET http://localhost:8080/metrics/system
Response Status
200
Response Body
{
  "basic": {
    "mem": 1010,
    "mem_total": 911,
    "mem_used": 239,
    "mem_free": 671,
    "mem_unit": "MB",
    "processors": 20,
    "uptime": 137503,
    "systemload_average": -1.0
  },
  "heap": {
    "committed": 911,
    "init": 254,
    "used": 239,
    "max": 3596
  },
  "nonheap": {
    "committed": 98,
    "init": 2,
    "used": 95,
    "max": 0
  },
  "thread": {
    "peak": 82,
    "daemon": 34,
    "total_started": 108,
    "count": 82
  },
  "class_loading": {
    "count": 11495,
    "loaded": 11495,
    "unloaded": 0
  },
  "garbage_collector": {
    "ps_scavenge_count": 16,
    "ps_scavenge_time": 155,
    "ps_marksweep_count": 3,
    "ps_marksweep_time": 494,
    "time_unit": "ms"
  }
}

4.后端指标

hugeGraph 支持多种后端存储,后端指标包括内存、磁盘等信息。

Method & Url
GET http://localhost:8080/metrics/backend
Response Status
200
Response Body
{
  "hugegraph": {
    "backend": "rocksdb",
    "nodes": 1,
    "cluster_id": "local",
    "servers": {
      "local": {
        "mem_unit": "MB",
        "disk_unit": "GB",
        "mem_used": 0.1,
        "mem_used_readable": "103.53 KB",
        "disk_usage": 0.03,
        "disk_usage_readable": "29.03 KB",
        "block_cache_usage": 0.00359344482421875,
        "block_cache_pinned_usage": 0.00359344482421875,
        "block_cache_capacity": 304.0,
        "estimate_table_readers_mem": 0.019697189331054688,
        "size_all_mem_tables": 0.07421875,
        "cur_size_all_mem_tables": 0.07421875,
        "estimate_live_data_size": 5.536526441574097E-5,
        "total_sst_files_size": 5.536526441574097E-5,
        "live_sst_files_size": 5.536526441574097E-5,
        "estimate_pending_compaction_bytes": 0.0,
        "estimate_num_keys": 0,
        "num_entries_active_mem_table": 0,
        "num_entries_imm_mem_tables": 0,
        "num_deletes_active_mem_table": 0,
        "num_deletes_imm_mem_tables": 0,
        "num_running_flushes": 0,
        "mem_table_flush_pending": 0,
        "num_running_compactions": 0,
        "compaction_pending": 0,
        "num_immutable_mem_table": 0,
        "num_snapshots": 0,
        "oldest_snapshot_time": 0,
        "num_live_versions": 38,
        "current_super_version_number": 38
      }
    }
  }
}

1.18 - Other API

11.1 Other

11.1.1 查看HugeGraph的版本信息

Method & Url
GET http://localhost:8080/versions
Response Status
200
Response Body
{
    "versions": {
        "version": "v1",
        "core": "0.4.5.1",
        "gremlin": "3.2.5",
        "api": "0.13.2.0"
    }
}

2 - HugeGraph Java Client

本文的代码都是java语言写的,但其风格与gremlin(groovy)是非常类似的。用户只需要把代码中的变量声明替换成def或直接去掉, 就能将java代码转变为groovy;另外就是每一行语句最后可以不加分号,groovy认为一行就是一条语句。 用户在HugeGraph-Studio中编写的gremlin(groovy)可以参考本文的java代码,下面会举出几个例子。

1 HugeGraph-Client

HugeGraph-Client 是操作 graph 的总入口,用户必须先创建出 HugeGraph-Client 对象,与 HugeGraph-Server 建立连接(伪连接)后,才能获取到 schema、graph 以及 gremlin 的操作入口对象。

目前 HugeGraph-Client 只允许连接服务端已存在的图,无法自定义图进行创建。其创建方法如下:

// HugeGraphServer地址:"http://localhost:8080"
// 图的名称:"hugegraph"
HugeClient hugeClient = HugeClient.builder("http://localhost:8080", "hugegraph")
                                  .configTimeout(20) // 默认 20s 超时
                                  .configUser("**", "**") // 默认未开启用户权限
                                  .build();

上述创建 HugeClient 的过程如果失败会抛出异常,用户需要try-catch。如果成功则继续获取 schema、graph 以及 gremlin 的 manager。

HugeGraph - Hubble / Studio中通过gremlin来操作时,不需要使用HugeClient,可以忽略。

2 元数据

2.1 SchemaManager

SchemaManager 用于管理 HugeGraph 中的四种元数据,分别是PropertyKey(属性类型)、VertexLabel(顶点类型)、EdgeLabel(边类型)和 IndexLabel(索引标签)。在定义元数据信息之前必须先创建 SchemaManager 对象。

用户可使用如下方法获得SchemaManager对象:

SchemaManager schema = hugeClient.schema()

HugeGraph-Studio中通过gremlin创建schema对象:

schema = graph.schema()

下面分别对三种元数据的定义过程进行介绍。

2.2 PropertyKey

2.2.1 接口及参数介绍

PropertyKey 用来规范顶点和边的属性的约束,暂不支持定义属性的属性。

PropertyKey 允许定义的约束信息包括:name、datatype、cardinality、userdata,下面逐一介绍。

  • name: 属性的名字,用来区分不同的 PropertyKey,不允许有同名的属性;
interfaceparammust set
propertyKey(String name)namey
  • datatype:属性值类型,必须从下表中选择符合具体业务场景的一项显式设置;
interfaceJava Class
asText()String
asInt()Integer
asDate()Date
asUuid()UUID
asBoolean()Boolean
asByte()Byte
asBlob()Byte[]
asDouble()Double
asFloat()Float
asLong()Long
  • cardinality:属性值是单值还是多值,多值的情况下又分为允许有重复值和不允许有重复值,该项默认为 single,如有必要可从下表中选择一项设置;
interfacecardinalitydescription
valueSingle()singlesingle value
valueList()listmulti-values that allow duplicate value
valueSet()setmulti-values that not allow duplicate value
  • userdata:用户可以自己添加一些约束或额外信息,然后自行检查传入的属性是否满足约束,或者必要的时候提取出额外信息
interfacedescription
userdata(String key, Object value)The same key, the latter will cover the former
2.2.2 创建 PropertyKey
schema.propertyKey("name").asText().valueSet().ifNotExist().create()

HugeGraph-Studio中通过gremlin创建上述PropertyKey对象的语法完全一致,如果用户没有定义出schema变量,应该这样写:

graph.schema().propertyKey("name").asText().valueSet().ifNotExist().create()

以下的示例中,gremlinjava的语法完全一致,不再赘述。

  • ifNotExist():为 create 添加判断机制,若当前 PropertyKey 已经存在则不再创建,否则创建该属性。若不添加判断,在 properkey 已存在的情况下会抛出异常信息,下同,不再赘述。
2.2.3 删除 PropertyKey
schema.propertyKey("name").remove()
2.2.4 查询 PropertyKey
// 获取PropertyKey对象
schema.getPropertyKey("name")

// 获取PropertyKey属性
schema.getPropertyKey("name").cardinality()
schema.getPropertyKey("name").dataType()
schema.getPropertyKey("name").name()
schema.getPropertyKey("name").userdata()

2.3 VertexLabel

2.3.1 接口及参数介绍

VertexLabel 用来定义顶点类型,描述顶点的约束信息:

VertexLabel 允许定义的约束信息包括:name、idStrategy、properties、primaryKeys和 nullableKeys,下面逐一介绍。

  • name: 属性的名字,用来区分不同的 VertexLabel,不允许有同名的属性;
interfaceparammust set
vertexLabel(String name)namey
  • idStrategy: 每一个 VertexLabel 都可以选择自己的 Id 策略,目前有三种策略供选择,即 Automatic(自动生成)、Customize(用户传入)和 PrimaryKey(主属性键)。其中 Automatic 使用 Snowflake 算法生成 Id,Customize 需要用户自行传入字符串或数字类型的 Id,PrimaryKey 则允许用户从 VertexLabel 的属性中选择若干主属性作为区分的依据,HugeGraph 内部会根据主属性的值拼接生成 Id。idStrategy 默认使用 Automatic的,但如果用户没有显式设置 idStrategy 又调用了 primaryKeys(…) 方法设置了主属性,则 idStrategy 将自动使用 PrimaryKey;
interfaceidStrategydescription
useAutomaticIdAUTOMATICgenerate id automatically by Snowflake algorithm
useCustomizeStringIdCUSTOMIZE_STRINGpassed id by user, must be string type
useCustomizeNumberIdCUSTOMIZE_NUMBERpassed id by user, must be number type
usePrimaryKeyIdPRIMARY_KEYchoose some important prop as primary key to splice id
  • properties: 定义顶点的属性,传入的参数是 PropertyKey 的 name
interfacedescription
properties(String… properties)allow to pass multi props
  • primaryKeys: 当用户选择了 PrimaryKey 的 Id 策略时,需要从 VertexLabel 的属性中选择若干主属性作为区分的依据;
interfacedescription
primaryKeys(String… keys)allow to choose multi prop as primaryKeys

需要注意的是,Id 策略的选择与 primaryKeys 的设置有一些相互约束,不能随意调用,约束关系见下表:

useAutomaticIduseCustomizeStringIduseCustomizeNumberIdusePrimaryKeyId
unset primaryKeysAUTOMATICCUSTOMIZE_STRINGCUSTOMIZE_NUMBERERROR
set primaryKeysERRORERRORERRORPRIMARY_KEY
  • nullableKeys: 对于通过 properties(…) 方法设置过的属性,默认全都是不可为空的,也就是在创建顶点时该属性必须赋值,这样可能对用户数据提出了太过严格的完整性要求。为避免这样的强约束,用户可以通过 本方法设置若干属性为可空的,这样添加顶点时该属性可以不赋值。
interfacedescription
nullableKeys(String… properties)allow to pass multi props

注意:primaryKeys 和 nullableKeys 不能有交集,因为一个属性不能既作为主属性,又是可空的。

  • enableLabelIndex:用户可以指定是否需要为label创建索引。不创建则无法全局搜索指定label的顶点和边,创建则可以全局搜索,做类似于g.V().hasLabel('person'), g.E().has('label', 'person')这样的查询, 但是插入数据时性能上会更加慢,并且需要占用更多的存储空间。此项默认为 true。
interfacedescription
enableLabelIndex(boolean enable)Whether to create a label index
  • userdata:用户可以自己添加一些约束或额外信息,然后自行检查传入的属性是否满足约束,或者必要的时候提取出额外信息
interfacedescription
userdata(String key, Object value)The same key, the latter will cover the former
2.3.2 创建 VertexLabel
// 使用 Automatic 的 Id 策略
schema.vertexLabel("person").properties("name", "age").ifNotExist().create();
schema.vertexLabel("person").useAutomaticId().properties("name", "age").ifNotExist().create();

// 使用 Customize_String 的 Id 策略
schema.vertexLabel("person").useCustomizeStringId().properties("name", "age").ifNotExist().create();
// 使用 Customize_Number 的 Id 策略
schema.vertexLabel("person").useCustomizeNumberId().properties("name", "age").ifNotExist().create();

// 使用 PrimaryKey 的 Id 策略
schema.vertexLabel("person").properties("name", "age").primaryKeys("name").ifNotExist().create();
schema.vertexLabel("person").usePrimaryKeyId().properties("name", "age").primaryKeys("name").ifNotExist().create();
2.3.3 追加 VertexLabel

VertexLabel 是可以追加约束的,不过仅限 properties 和 nullableKeys,而且追加的属性也必须添加到 nullableKeys 集合中。

schema.vertexLabel("person").properties("price").nullableKeys("price").append();
2.3.4 删除 VertexLabel
schema.vertexLabel("person").remove();
2.3.5 查询 VertexLabel
// 获取VertexLabel对象
schema.getVertexLabel("name")

// 获取property key属性
schema.getVertexLabel("person").idStrategy()
schema.getVertexLabel("person").primaryKeys()
schema.getVertexLabel("person").name()
schema.getVertexLabel("person").properties()
schema.getVertexLabel("person").nullableKeys()
schema.getVertexLabel("person").userdata()

2.4 EdgeLabel

2.4.1 接口及参数介绍

EdgeLabel 用来定义边类型,描述边的约束信息。

EdgeLabel 允许定义的约束信息包括:name、sourceLabel、targetLabel、frequency、properties、sortKeys 和 nullableKeys,下面逐一介绍。

  • name: 属性的名字,用来区分不同的 EdgeLabel,不允许有同名的属性;
interfaceparammust set
edgeLabel(String name)namey
  • sourceLabel: 边连接的源顶点类型名,只允许设置一个;

  • targetLabel: 边连接的目标顶点类型名,只允许设置一个;

interfaceparammust set
sourceLabel(String label)labely
targetLabel(String label)labely
  • frequency: 字面意思是频率,表示在两个具体的顶点间某个关系出现的次数,可以是单次(single)或多次(frequency),默认为single;
interfacefrequencydescription
singleTime()singlea relationship can only occur once
multiTimes()multiplea relationship can occur many times
  • properties: 定义边的属性
interfacedescription
properties(String… properties)allow to pass multi props
  • sortKeys: 当 EdgeLabel 的 frequency 为 multiple 时,需要某些属性来区分这多次的关系,故引入了 sortKeys(排序键);
interfacedescription
sortKeys(String… keys)allow to choose multi prop as sortKeys
  • nullableKeys: 与顶点中的 nullableKeys 概念一致,不再赘述

注意:sortKeys 和 nullableKeys也不能有交集。

  • enableLabelIndex:与顶点中的 enableLabelIndex 概念一致,不再赘述

  • userdata:用户可以自己添加一些约束或额外信息,然后自行检查传入的属性是否满足约束,或者必要的时候提取出额外信息

interfacedescription
userdata(String key, Object value)The same key, the latter will cover the former
2.4.2 创建 EdgeLabel
schema.edgeLabel("knows").link("person", "person").properties("date").ifNotExist().create();
schema.edgeLabel("created").multiTimes().link("person", "software").properties("date").sortKeys("date").ifNotExist().create();
2.4.3 追加 EdgeLabel
schema.edgeLabel("knows").properties("price").nullableKeys("price").append();
2.4.4 删除 EdgeLabel
schema.edgeLabel("knows").remove();
2.4.5 查询 EdgeLabel
// 获取EdgeLabel对象
schema.getEdgeLabel("knows")

// 获取property key属性
schema.getEdgeLabel("knows").frequency()
schema.getEdgeLabel("knows").sourceLabel()
schema.getEdgeLabel("knows").targetLabel()
schema.getEdgeLabel("knows").sortKeys()
schema.getEdgeLabel("knows").name()
schema.getEdgeLabel("knows").properties()
schema.getEdgeLabel("knows").nullableKeys()
schema.getEdgeLabel("knows").userdata()

2.5 IndexLabel

2.5.1 接口及参数介绍

IndexLabel 用来定义索引类型,描述索引的约束信息,主要是为了方便查询。

IndexLabel 允许定义的约束信息包括:name、baseType、baseValue、indexFields、indexType,下面逐一介绍。

  • name: 属性的名字,用来区分不同的 IndexLabel,不允许有同名的属性;
interfaceparammust set
indexLabel(String name)namey
  • baseType: 表示要为 VertexLabel 还是 EdgeLabel 建立索引, 与下面的 baseValue 配合使用;

  • baseValue: 指定要建立索引的 VertexLabel 或 EdgeLabel 的名称;

interfaceparamdescription
onV(String baseValue)baseValuebuild index for VertexLabel: ‘baseValue’
onE(String baseValue)baseValuebuild index for EdgeLabel: ‘baseValue’
  • indexFields: 要在哪些属性上建立索引,可以是为多列建立联合索引;
interfaceparamdescription
by(String… fields)filesallow to build index for multi fields for secondary index
  • indexType: 建立的索引类型,目前支持五种,即 Secondary、Range、Search、Shard 和 Unique。
    • Secondary 支持精确匹配的二级索引,允许建立联合索引,联合索引支持索引前缀搜索
      • 单个属性,支持相等查询,比如:person顶点的city属性的二级索引,可以用g.V().has("city", "北京") 查询"city属性值是北京"的全部顶点
      • 联合索引,支持前缀查询和相等查询,比如:person顶点的city和street属性的联合索引,可以用g.V().has ("city", "北京").has('street', '中关村街道') 查询"city属性值是北京且street属性值是中关村"的全部顶点,或者g.V() .has("city", "北京")查询"city属性值是北京"的全部顶点

      secondary index的查询都是基于"是"或者"相等"的查询条件,不支持"部分匹配"

    • Range 支持数值类型的范围查询
      • 必须是单个数字或者日期属性,比如:person顶点的age属性的范围索引,可以用g.V().has("age", P.gt(18)) 查询"age属性值大于18"的顶点。除了P.gt()以外,还支持P.gte(), P.lte(), P.lt(), P.eq(), P.between(), P.inside()P.outside()
    • Search 支持全文检索的索引
      • 必须是单个文本属性,比如:person顶点的address属性的全文索引,可以用g.V().has("address", Text .contains('大厦')查询"address属性中包含大厦"的全部顶点

      search index的查询是基于"是"或者"包含"的查询条件

    • Shard 支持前缀匹配 + 数字范围查询的索引
      • N个属性的分片索引,支持前缀相等情况下的范围查询,比如:person顶点的city和age属性的分片索引,可以用g.V().has ("city", "北京").has("age", P.between(18, 30)) 查询"city属性是北京且年龄大于等于18小于30"的全部顶点
      • shard index N个属性全是文本属性时,等价于secondary index
      • shard index只有单个数字或者日期属性时,等价于range index

      shard index可以有任意数字或者日期属性,但是查询时最多只能提供一个范围查找条件,且该范围查找条件的属性的前缀属性都是相等查询条件

    • Unique 支持属性值唯一性约束,即可以限定属性的值不重复,允许联合索引,但不支持查询
      • 单个或者多个属性的唯一性索引,不可用来查询,只可对属性的值进行限定,当出现重复值时将报错
interfaceindexTypedescription
secondary()Secondarysupport prefix search
range()Rangesupport range(numeric or date type) search
search()Searchsupport full text search
shard()Shardsupport prefix + range(numeric or date type) search
unique()Uniquesupport unique props value, not support search
2.5.2 创建 IndexLabel
schema.indexLabel("personByAge").onV("person").by("age").range().ifNotExist().create();
schema.indexLabel("createdByDate").onE("created").by("date").secondary().ifNotExist().create();
schema.indexLabel("personByLived").onE("person").by("lived").search().ifNotExist().create();
schema.indexLabel("personByCityAndAge").onV("person").by("city", "age").shard().ifNotExist().create();
schema.indexLabel("personById").onV("person").by("id").unique().ifNotExist().create();
2.5.3 删除 IndexLabel
schema.indexLabel("personByAge").remove()
2.5.4 查询 IndexLabel
// 获取IndexLabel对象
schema.getIndexLabel("personByAge")

// 获取property key属性
schema.getIndexLabel("personByAge").baseType()
schema.getIndexLabel("personByAge").baseValue()
schema.getIndexLabel("personByAge").indexFields()
schema.getIndexLabel("personByAge").indexType()
schema.getIndexLabel("personByAge").name()

3 图数据

3.1 Vertex

顶点是构成图的最基本元素,一个图中可以有非常多的顶点。下面给出一个添加顶点的例子:

Vertex marko = graph.addVertex(T.label, "person", "name", "marko", "age", 29);
Vertex lop = graph.addVertex(T.label, "software", "name", "lop", "lang", "java", "price", 328);
  • 添加顶点的关键是顶点属性,添加顶点函数的参数个数必须为偶数,且满足key1 -> val1, key2 -> val2 ···的顺序排列,键值对之间的顺序是自由的。
  • 参数中必须包含一对特殊的键值对,就是T.label -> "val",用来定义该顶点的类别,以便于程序从缓存或后端获取到该VertexLabel的schema定义,然后做后续的约束检查。例子中的label定义为person。
  • 如果顶点类型的 Id 策略为 AUTOMATIC,则不允许用户传入 id 键值对。
  • 如果顶点类型的 Id 策略为 CUSTOMIZE_STRING,则用户需要自己传入 String 类型 id 的值,键值对形如:"T.id", "123456"
  • 如果顶点类型的 Id 策略为 CUSTOMIZE_NUMBER,则用户需要自己传入 Number 类型 id 的值,键值对形如:"T.id", 123456
  • 如果顶点类型的 Id 策略为 PRIMARY_KEY,参数还必须全部包含该primaryKeys对应属性的名和值,如果不设置会抛出异常。比如之前personprimaryKeysname,例子中就设置了name的值为marko
  • 对于非 nullableKeys 的属性,必须要赋值。
  • 剩下的参数就是顶点其他属性的设置,但并非必须。
  • 调用addVertex方法后,顶点会立刻被插入到后端存储系统中。

3.2 Edge

有了点,还需要边才能构成完整的图。下面给出一个添加边的例子:

Edge knows1 = marko.addEdge("knows", vadas, "city", "Beijing");
  • 由(源)顶点来调用添加边的函数,函数第一个参数为边的label,第二个参数是目标顶点,这两个参数的位置和顺序是固定的。后续的参数就是key1 -> val1, key2 -> val2 ···的顺序排列,设置边的属性,键值对顺序自由。
  • 源顶点和目标顶点必须符合 EdgeLabel 中 source-label 和 target-label 的定义,不能随意添加。
  • 对于非 nullableKeys 的属性,必须要赋值。

注意:当frequency为multiple时必须要设置sortKeys对应属性类型的值。

4 简单示例

简单示例见HugeGraph-Client

3 - Gremlin-Console

Gremlin-Console 是由 Tinkerpop 自己开发的一个交互式客户端,用户可以使用该客户端对 Graph 做各种操作,主要有两种使用模式:

  • 单机离线调用模式
  • Client/Server 请求模式

注:Gremlin-Console 只是便于用户快速上手体验,不建议在生产环境中使用。

1 单机离线调用模式

由于 lib 目录下已经包含了 HugeCore 的 jar 包,且 HugeGraph-Server 已经作为插件注册到 Gremlin-Console 中,用户可以直接写 Groovy 脚本调用 HugeGraph-Core 的代码,然后交由 Gremlin-Console 内的解析引擎执行,就能在不启动 Server 的情况下操作图。

这里提供一个示例,首先修改 hugegraph.properties 配置使用 Memory 后端 (使用其他后端可能会出现一些初始化问题):

backend=memory
serializer=text

然后输入下述命令:

> ./bin/gremlin-console.sh -- -i scripts/example.groovy

         \,,,/
         (o o)
-----oOOo-(3)-oOOo-----
plugin activated: HugeGraph
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
main dict load finished, time elapsed 644 ms
model load finished, time elapsed 35 ms.
>>>> query all vertices: size=6
>>>> query all edges: size=6
gremlin> 

这里的 -- 会被 getopts 解析为最后一个 option,这样后面的 options 就可以传入 Gremlin-Console 进行处理了。-i 代表 Execute the specified script and leave the console open on completion,更多的选项可以参考 Gremlin-Console 的源代码

其中 example.groovy 是 scripts 目录下的一个示例脚本,该脚本插入了一些数据,并在最后查询图中顶点和边的数量。

此时还可以继续输入 Gremlin 语句对图进行操作:

gremlin> g.V()
==>v[2:lop]
==>v[1:josh]
==>v[1:marko]
==>v[1:peter]
==>v[1:vadas]
==>v[2:ripple]
gremlin> g.E()
==>e[S1:josh>2>>S2:lop][1:josh-created->2:lop]
==>e[S1:josh>2>>S2:ripple][1:josh-created->2:ripple]
==>e[S1:marko>1>>S1:josh][1:marko-knows->1:josh]
==>e[S1:marko>1>>S1:vadas][1:marko-knows->1:vadas]
==>e[S1:marko>2>>S2:lop][1:marko-created->2:lop]
==>e[S1:peter>2>>S2:lop][1:peter-created->2:lop]
gremlin> 

更多的 Gremlin 语句请参考 Tinkerpop 官网

2 Client/Server 请求模式

因为 Gremlin-Console 只能通过 WebSocket 连接 HugeGraph-Server,默认 HugeGraph-Server 是对外提供 HTTP 连接的,所以先修改 gremlin-server 的配置。

注意:将连接方式修改为 WebSocket 后,HugeGraph-Client、HugeGraph-Loader、HugeGraph-Hubble 等配套工具都不能使用了。

# vim conf/gremlin-server.yaml
# ......
# If you want to start gremlin-server for gremlin-console (web-socket),
# please change `HttpChannelizer` to `WebSocketChannelizer` or comment this line.
channelizer: org.apache.tinkerpop.gremlin.server.channel.HttpChannelizer
# ......

channelizer: org.apache.tinkerpop.gremlin.server.channel.HttpChannelizer 修改成 channelizer: org.apache.tinkerpop.gremlin.server.channel.WebSocketChannelizer 或直接注释,然后按照步骤启动 HugeGraph-Server。

下面进入 Gremlin-Console:

> ./bin/gremlin-console.sh

         \,,,/
         (o o)
-----oOOo-(3)-oOOo-----
plugin activated: HugeGraph
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph

连接 Server,需在配置文件中指定连接参数,在 conf 目录下有一个默认的 remote.yaml

# cat conf/remote.yaml
hosts: [localhost]
port: 8182
serializer: {
  className: org.apache.tinkerpop.gremlin.driver.ser.GraphSONMessageSerializerV1d0,
  config: {
    serializeResultToString: false,
    ioRegistries: [org.apache.hugegraph.io.HugeGraphIoRegistry]
  }
}
gremlin> :remote connect tinkerpop.server conf/remote.yaml
==>Configured localhost/127.0.0.1:8182

连接成功之后,如果在启动 HugeGraph-Server 的过程中导入了示例图,就可以在 Gremlin-Console 中直接进行查询:

gremlin> :> hugegraph.traversal().V()
==>[id:2:lop,label:software,type:vertex,properties:[name:lop,lang:java,price:328]]
==>[id:1:josh,label:person,type:vertex,properties:[name:josh,age:32,city:Beijing]]
==>[id:1:marko,label:person,type:vertex,properties:[name:marko,age:29,city:Beijing]]
==>[id:1:peter,label:person,type:vertex,properties:[name:peter,age:35,city:Shanghai]]
==>[id:1:vadas,label:person,type:vertex,properties:[name:vadas,age:27,city:Hongkong]]
==>[id:2:ripple,label:software,type:vertex,properties:[name:ripple,lang:java,price:199]]

注意:在 Client/Server 模式下,所有和 Server 有关的操作都要加上 :> ,如果不加,表示在 console 本地操作。

还可以把多条语句放在一个字符串变量中,然后一次性发给 Server:

gremlin> script = """
......1> graph = hugegraph;
......2> g = graph.traversal();
......3> g.V().toList().size();
......4> """
==>
graph = hugegraph;
g = graph.traversal();
g.V().toList().size();

gremlin> :> @script
==>6
gremlin> 

更多关于 Gremlin-Console 的使用,请参考 Tinkerpop 官网